
A Tutorial for Git and 

GitHub

Xiao Li

Department of Informatics

University of Zurich



Agenda

 Why use Version (Source) Control Systems

 What are Git and GitHub

 Basic Git Commands

 Fundamentals of GitHub

 Using GitHub in Project Implementation



3

Why version control?

 Scenario 1:

Your program is working

You change “just one thing”

Your program breaks

You change it back

Your program is still broken--why?

 Has this ever happened to you?



4

Why version control? (part 2)

 Your program worked well enough yesterday

 You made a lot of improvements last night...

 ...but you haven't gotten them to work yet

 You need to turn in your program now

 Has this ever happened to you?



5

Version control for teams

 Scenario:

You change one part of a program--it works

Your co-worker changes another part--it works

You put them together--it doesn’t work

Some change in one part must have broken something in the 

other part

What were all the changes?



6

Teams (part 2)

 Scenario:

You make a number of improvements to a 

class

Your co-worker makes a number of different

improvements to the same class

 How can you merge these changes?



7

Version control systems

 A version control system (often called a source code 

control system) does these things:

Keeps multiple (older and newer) versions of everything (not 

just source code)

Requests comments regarding every change

Allows “check in” and “check out” of files so you know which 

files someone else is working on

Displays differences between versions



Benefits of version control

 For working by yourself:

Gives you a “time machine” for going back to earlier versions

Gives you great support for different versions (standalone, web 

app, etc.) of the same basic project

 For working with others:

Greatly simplifies concurrent work, merging changes

8



What are Git and GitHub

 Git is a free and open source distributed version control 

system designed to handle everything from small to very 

large projects with speed and efficiency

 GitHub is a web-based Git repository hosting service, 

which offers all of the distributed revision control and 

source code management (SCM) functionality of Git as 

well as adding its own features.



How to setup Git and GitHub

 Download and install the latest version of GitHub 

Desktop. This will automatically install Git and keep it up-

to-date for you.

 https://help.github.com/articles/set-up-git/

https://desktop.github.com/


BASIC GIT COMMANDS



Introduce yourself to Git

 On your computer, open the Git Shell application.

 Enter these lines (with appropriate changes):
 git config --global user.name "John Smith"

 git config --global user.email jsmith@seas.upenn.edu

 You only need to do this once

 If you want to use a different name/email address for a 

particular project, you can change it for just that project

cd to the project directory

Use the above commands, but leave out the --global
12

mailto:jsmith@seas.upenn.edu


The repository

 Your top-level working directory contains everything about your project

 The working directory probably contains many subdirectories—source code, binaries, 

documentation, data files, etc.

 One of these subdirectories, named .git, is your repository

 At any time, you can take a “snapshot” of everything (or selected things) in 

your project directory, and put it in your repository

 This “snapshot” is called a commit object

 The commit object contains (1) a set of files, (2) references to the “parents” of the commit 

object, and (3) a unique “SHA1” name

 Commit objects do not require huge amounts of memory

 You can work as much as you like in your working directory, but the 

repository isn’t updated until you commit something

13



init and the .git repository

 When you said git init in your project directory, or 

when you cloned an existing project, you created a 

repository

The repository is a subdirectory named .git containing various 

files

The dot indicates a “hidden” directory

You do not work directly with the contents of that directory; 

various git commands do that for you

14



Making commits
 You do your work in your project directory, as usual

 If you create new files and/or folders, they are not tracked by Git unless you ask it to do so

 git add newFile1 newFolder1 newFolder2 newFile2

 Committing makes a “snapshot” of everything being tracked into your repository

 A message telling what you have done is required

 git commit –m “Uncrevulated the conundrum bar”

 git commit

 This version opens an editor for you the enter the message

 To finish, save and quit the editor

 Format of the commit message
 One line containing the complete summary

 If more than one line, the second line must be blank

15



Commits and graphs
 A commit is when you tell git that a change (or addition) you have made is 

ready to be included in the project

 When you commit your change to git, it creates a commit object

 A commit object represents the complete state of the project, including all the files in 

the project

 The very first commit object has no “parents”

 Usually, you take some commit object, make some changes, and create a new commit 

object; the original commit object is the parent of the new commit object

 Hence, most commit objects have a single parent

 You can also merge two commit objects to form a new one

 The new commit object has two parents

 Hence, commit objects forms a directed graph

 Git is all about using and manipulating this graph

16



Commit messages

 In git, “Commits are cheap.” Do them often.

 When you commit, you must provide a one-line message 

stating what you have done

Terrible message: “Fixed a bunch of things”

Better message: “Corrected the calculation of median scores”

 Commit messages can be very helpful, to yourself as well 

as to your team members

 You can’t say much in one line, so commit often
17



Typical workflow

 git status

See what Git thinks is going on

Use this frequently!

 Work on your files 

 git add your editfiles

 git commit –m “What I did”

18



Keeping it simple
 If you:

 Make sure you are current with the central repository

 Make some improvements to your code

 Update the central repository before anyone else does

 Then you don’t have to worry about resolving conflicts or working 

with multiple branches

 All the complexity in git comes from dealing with these

 Therefore:

 Make sure you are up-to-date before starting to work

 Commit and update the central repository frequently

 If you need help: https://help.github.com/
19

https://help.github.com/


More Commands: Don’t Get Scared.

GitHub Desktop can Help You



FUNDAMENTALS OF GITHUB



Introduce yourself to GitHub

 Register on GitHub

https://github.com/

 Authenticating to GitHub Desktop

https://help.github.com/desktop/guides/getting-

started/authenticating-to-github/

 Configuring Git for GitHub Desktop

https://help.github.com/desktop/guides/getting-

started/configuring-git-for-github-desktop/

https://github.com/
https://help.github.com/desktop/guides/getting-started/authenticating-to-github/
https://help.github.com/desktop/guides/getting-started/configuring-git-for-github-desktop/


Create or add a repository to GitHub

 Create a new repository on GitHub

https://help.github.com/articles/create-a-repo/

 From GitHub Desktop, then Publish to GitHub

https://help.github.com/desktop/guides/contributing/adding-a-

repository-from-your-local-computer-to-github-desktop/

Remember to Publish, otherwise your repository would not 

appear on the GitHub website.

https://help.github.com/articles/create-a-repo/
https://help.github.com/desktop/guides/contributing/adding-a-repository-from-your-local-computer-to-github-desktop/


Commit your changes on GitHub

 From GitHub Website

https://help.github.com/articles/create-a-repo/

 From GitHub Desktop

https://help.github.com/desktop/guides/contributing/committing-

and-reviewing-changes-to-your-project/

https://help.github.com/articles/create-a-repo/
https://help.github.com/desktop/guides/contributing/committing-and-reviewing-changes-to-your-project/


Creating a branch for your work

 A branch is a parallel version of the main line of 

development in the repository, or the default branch 

(usually master). Use branches to
 Develop features

 Fix bugs

 Safely experiment with new ideas

 From the GitHub Website

 https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/

 From the GitHub Desktop

 https://help.github.com/desktop/guides/contributing/creating-a-branch-for-your-work/

https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/
https://help.github.com/desktop/guides/contributing/creating-a-branch-for-your-work/


Synchronizing your branch

 As commits are pushed to your project on GitHub, you 

can keep your local copy of the project in sync with the 

remote repository.

https://help.github.com/desktop/guides/contributing/syncing-

your-branch/



Viewing the history of your commits

 When you click a commit on the commit timeline, you can 

see more details about the commit, including a diff of the 

changes the commit introduced.

 Each commit shows:

The commit message

The time the commit was created

The committer's username and profile photo (if available)

The commit's SHA-1 hash (the unique ID)



Revert your commit

 If you change your mind about a commit after you create 

it, you can revert the commit.

 When you revert to a previous commit, the revert is also a 

commit. In addition, the original commit remains in the 

repository's history.

 https://help.github.com/desktop/guides/contributing/reverti

ng-a-commit/



Fork & Pull: A Collaborative model
 A fork is a copy of a repository that you manage. Forks let 

you make changes to a project without affecting the 

original repository. You can fetch updates from or submit 

changes to the original repository with pull requests.

 A great example of using forks to propose changes is for 

bug fixes. Rather than logging an issue for a bug you've 

found, you can:

Fork the repository.

Make the fix.

Submit a pull request to the project owner.



Using GitHub in Project Implementation

In the section of project implementation in your project 

report, you may describe:

 How you use GitHub in your project

 How version control helps your quality management

 How you collaborate with your teammate in GitHub



References
Some content of the slides are adapted from:

 https://help.github.com/desktop/guides/getting-started/

 https://help.github.com/desktop/guides/contributing/

 https://help.github.com/categories/collaborating/

 http://www.cis.upenn.edu/~matuszek/cit591-

2012/Lectures/git.ppt

https://help.github.com/desktop/guides/getting-started/
https://help.github.com/desktop/guides/getting-started/
https://help.github.com/desktop/guides/contributing/
https://help.github.com/categories/collaborating/
http://www.cis.upenn.edu/~matuszek/cit591-2012/Lectures/git.ppt

