METODE NEWTON RAPHSON

Algoritma Metode Newton Raphson:

- 1. Tentukan Harga fungsi $f(x_i)$
- 2. Tentukan Harga Awal (x_i)
- 3. Tentukan Interval = [a;b] dengan jumlah pembagi Δh
- 4. Tentukan toleransi kesalahan (ε_s) dan iterasi maksimum (n)
- 5. Hitung nilai fungsi $f(x_i)$ dan turunannya $f'(x_i)$
- 6. Hitung nilai X_{i+1} menggunakan rumus :

$$X_{i+1} = X_i - \frac{f(xi)}{f'(xi)}$$

- 7. Hitung kesalahan dan bandingkan dengan toleransi kesalahan yang diizinkan
 - (i) Jika $\varepsilon_a > \varepsilon_s$, maka ulangi langkah ke-2
- 8. Akar persamaan adalah X_i terakhir yang diperoleh.

METODE SECANT

Algoritma Metode Secant

- 1. Tentukan harga fungsi $f(x_i)$
 - 2. Tentukan harga awal X_i
 - 3. Tentukan range nilai X = [a;b] dengan jumlah pembagi Δh
 - 4. Tentukan toleransi kesalahan (ε_s) dan iterasi maksimum (n)
 - 5. Hitung nilai X_{i+1} menggunakan rumus :

$$X_{i+1} = X_i - \frac{f(x_i)(x_{i-1} - x_i)}{f'(x_{i-1}) - f(x_i)}$$

- 6. Hitung kesalahan dan bandingkan dengan toleransi kesalahan yang diizinkan
 - (iii) Jika $\varepsilon_a > \varepsilon_s$, maka ulangi langkah ke-2
 - (iv) Jika $\epsilon_a < \epsilon_s$, maka iterasi selesai dan X_{i+1} sebagai akar persamaan
- 7. Akar persamaan adalah X_i terakhir yang diperoleh.