#### **Consumer Behavior**

Ch. 7

#### Introduction

- We have already seen and used an individual's demand curve. Now, want to explain in more detail why it slopes downward
- Why do people demand goods and services?
  - Receive satisfaction or pleasure from consuming the good.
  - Economists terms this satisfaction <u>utility</u>.

#### Introduction

 In economics, we are not try to explain why people get utility from certain goods. We take that as a given.

#### Example:

- Some people like jazz, others hate it.
- Economists say given an individual's preferences about jazz, how many jazz music CD's might they purchase.

## **Total and Marginal Utility**

- <u>Total Utility</u> (TU) relates consumption of a good to the utility derived from consuming a good. (This could be many units of a good)
- Marginal Utility (MU) the change in total utility when consumption of a good changes by one unit.
  - MU =  $\Delta$ TU /  $\Delta$  Q consumed of a good

# Law of Diminishing Marginal Utility

 Law of Diminishing Marginal Utility

 eventually, a point is reached where the marginal utility obtained by consuming additional units of a good starts to decline, ceteris paribus.

# Law of Diminishing Marginal Utility

#### Example

- If I'm really hungry, I get a lot of satisfaction from first slice of pizza.
- If I keep eating pizza, the satisfaction from the 8th slice would be much less than that of the first slice.

## Law of Diminishing MU

Notes about the Law of Diminishing MU

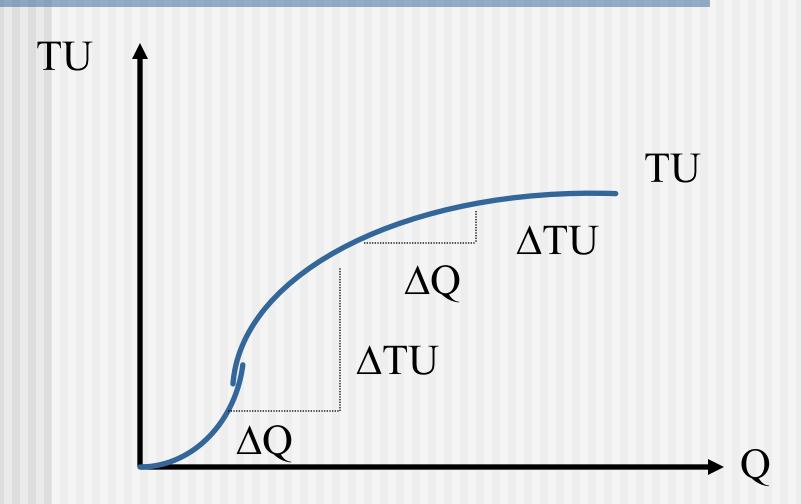
- Time period must be specified for law.
  - Law tells us that **eventually** the marginal utility curve will be downward sloping.
    - Law tells us that eventually the total utility curve will become "flatter."

 Slope of the total utility curve is equal to marginal utility

### Marginal Utility



### Shape of MU


#### Eventually downward sloping

Law of diminishing marginal utility

#### Positive always

- Rational behavior
  - Consumer only purchases a good if they get some positive utility from it.

## **Total Utility**



#### Shape of TU

#### Positive slope

 Consumer only purchases a good if gets some positive amount of utility (rational behavior)

## Slope gets flatter as Q increases Law of diminishing marginal utility

Now that we understand the concepts of utility theory - we will use them to explain how consumers make decisions about what to buy

- For instance, I would much rather have a Jaguar instead of my Honda
- If I want to maximize my utility, why don't I buy a Jaguar?
  - Because it costs a lot more than the Honda
- So if I want to maximize my utility, I don't just pick the thing that gives me the most pleasure. I have to weigh the price of the good in my decision as well

So how can I compare a Jaguar and a Honda? It's like comparing apples and oranges. Instead, I need to somehow make them both comparable.

In order to do that I will need to convert utility to utility per dollar. This way, I can see that even though the Jag gives me more utility, I get more utility per dollar from the Honda. So if I want to spend my money wisely, I buy the thing that gives me more utility per dollar.

- Let's say I walk down to the cafeteria for lunch and they have Pizza and Ice Cream.
- The pizza is \$1 a slice and the Ice Cream is \$2 a scoop. I have \$7 in my pocket What do I buy?

- Remember, I want to choose the combination of pizza and Ice Cream that gives me the greatest possible utility for my \$7
- Consider the following table, which states the total utility I get from all possible quantities of Pizza and Ice Cream

### **Utility Table**

|          | Ice Cream     |                | Pizza         |                        |
|----------|---------------|----------------|---------------|------------------------|
| Quantity | Total Util. M | larginal Util. | Total Util. N | <u>Iarginal Util</u> . |
| 0        | 0             |                | 0             |                        |
| 1        | 24            |                | 29            |                        |
| 2        | 44            |                | 46            |                        |
| 3        | 60            |                | 56            |                        |
| 4        | 70            |                | 58            |                        |
| 5        | 72            |                | 59            |                        |
| 6        | 72            |                | 59            |                        |

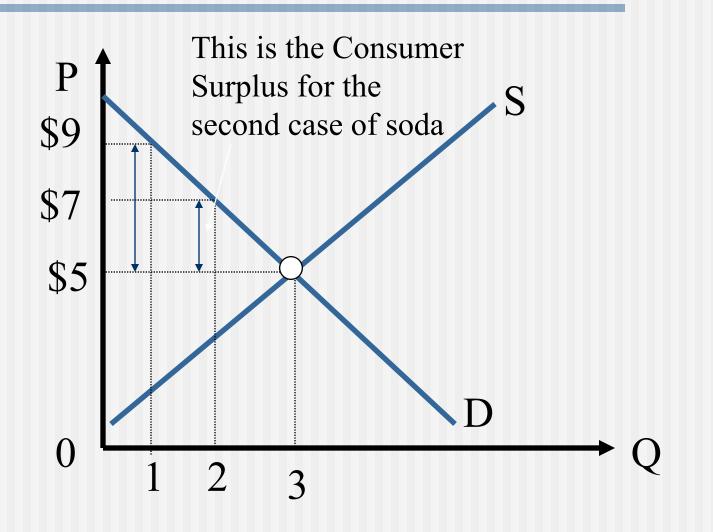
### **Utility Table**

|          | Ice Cream     |                | Pizza         |                 |
|----------|---------------|----------------|---------------|-----------------|
| Quantity | Total Util. M | larginal Util. | Total Util. N | /larginal Util. |
| 0        | 0             |                | 0             |                 |
| 1        | 24            | 24             | 29            | 29              |
| 2        | 44            | 20             | 46            | 17              |
| 3        | 60            | 16             | 56            | 10              |
| 4        | 70            | 10             | 58            | 2               |
| 5        | 72            | 2              | 59            | 1               |
| 6        | 72            | 0              | 59            | 0               |

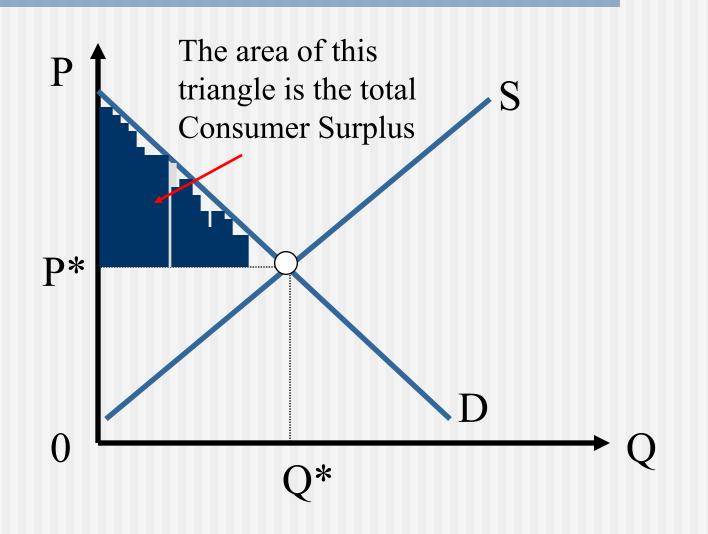
- We need to find the marginal utility per dollar for both goods.
- Consider the first scoop of ice cream -MU 12 per dollar. MU of the first slice of pizza 29 per dollar. So I want to buy the pizza. Now I have \$6.
- Now I have to compare my second slice of pizza (MU is 17 /\$) with the first scoop of ice cream (MU is 12 /\$). I will want to buy the second slice of pizza. I have \$5.

- Now I have to compare the third slice o pizza (MU 10/\$) with the first scoop of ice cream (MU 12/\$). I will want to buy the ice cream. I have \$3.
- Now I have to compare the third slice of pizza (MU 10 /\$) with the second scoop of ice cream (MU 10 /\$). It doesn't matter which I pick, since they make me equally happy. I'll take the pizza. Now I have \$2

- Now I have to compare the fourth slice of pizza (MU is 2/\$) to the second scoop of ice cream (MU is 10 /\$). I will want to buy the ice cream. I have no more money.
- I bought 3 slices of pizza which give a total utility of 56 and 2 scoops of ice cream which give a total utility of 44. My total utility from lunch is 56+44=100. There is no other combination of pizza and ice cream that give a greater utility for \$7.


- What if the price of the ice cream dropped to \$1 a scoop.
- Assignment: Convince yourself that I will buy 4 scoops of ice cream and 4 slices of pizza.
- Note that when the price went down, I bought more - THIS IS WHERE THE LAW OF DEMAND COMES FROM.

- In summary, you need to convert marginal utility to marginal utility per dollar
- Then compare MU/P for the two goods and buy the one that gives the greatest MU/P
- Subtract the price from your budget
- Compare the next available units of both goods and repeat the process until you are out of money.


Consumer Surplus - the difference between the price buyers pay for a good and the maximum amount they would have paid for the good.

Example:

- I'm willing to pay \$6 for a case of soda
- Soda is on sale for \$5 a case
- Consumer surplus = \$1



Here is the generally accepted method of finding the total Consumer Surplus in a market

