Chapter 3: Elasticity

- Price elasticity
- demand
- supply
- Cross elasticity
- Income elasticity

Basic idea

- We know when P

Qd
Qs

holding other factors constan

but how much?

- if price doubles
how much does Qd fall?
- by 10%
- by 50%
- by 300\%?
- price elasticity tells us

I. Price Elasticity of Demand

example

- mocha latte at Starbucks
- price rises from $\$ 3$ to $\$ 5$ per cup
- Qd falls from 15 to 5 cups per hr.

equation

\% change in Qd

\% change in P

\% change in Qd

new Qd - initial Qd

average Qd

x 100

 $\underbrace{\text { average }}_{\uparrow}$ midpoint method
example

5 cups - 15 cups

 (5+15)/2 cups-10 cups $x 100=-100 \%$
10 cups

\% change in P

new P - initial P

x 100

average P

$\underbrace{}_{\uparrow}$

midpoint method

example

> \$5 - \$3

x 100

(\$5+\$3)/2
$\$ 2 \times 100=50 \%$
\$4

demand elasticity

\% change in Qd

\% change in P

-100\%

$$
=-2
$$

50\%

- If price of latte increases 1\%,

Qd of latte decreases 2\%

demand elasticity

- a unit-free measure
- compare all goods \& services
- changes for different points
on the demand curve

if price elasticity of demand (absolute value)

- = 1
unit elastic
\% change Qd = \% change P
- > 1
elastic
\% change Qd > \%change P
sensitive to P changes
< 1
inelastic
\% change Qd < \%change P not sensitive to P changes
elastic demand
(>1)
- flatter curve

P

small change in P big change in Qd
inelastic demand

- steep curve

P

big change in P small change in Qd

Q

perfectly inelastic demand

- vertical line

P

change in P no change in Qd

perfectly elastic demand

- horizontal line

any change in P
 Qd falls to zero

Q

effect on total revenue

- total revenue (TR)

$$
=P \times Q
$$

- if demand is elastic,
- TR falls as price rises
- if demand is inelastic,
- TR rises as price rises

example: cup of latte

- initial $P=\$ 3, Q d=15$.

TR = \$ $3 \times 15=\$ 45$

- new $P=\$ 5, Q d=5$
$T R=\$ 5 \times 5=\$ 25$
- demand for latte is elastic

TR falls as P rises

what makes demand elastic or inelastic?

1. is it a luxury or necessity

- if luxury, demand is elastic
- if necessity, demand is inelastic

example

- mocha latte at Starbucks
is a luxury
- a liver transplant is not

2. definition of good

- latte at Starbucks,
narrow definition= many substitutes
(other brands of coffee, tea)
demand is elastic
- coffee in general, broad definition $=$ fewer substitutes demand is less elastic

3. time since price change

- short time
no time to adjust,
demand is inelastic
- long time
time to adjust, demand is elastic

example

- Price of gas per gallon
- the day price rises
- demand inelastic
- years later
- demand much more elastic
as carpool or buy smaller car

factors 1-3

all get at same issue:

- can consumers substitute a cheaper good easily?
- if yes, demand is elastic
- if no, demand is inelastic

4. Is item large part of your budget?

- if yes, then demand elastic (forced to change behavior)
- if no, then demand inelastic (no need to change behavior)

example

- soap
- if price doubles, will you buy less?
- rent
- if rent doubles?
-- stay on campus?
-- more roommates?

II. Price Elasticity of Supply

\% change in Qs

\% change in P

example

- bunch of roses
- $\mathrm{P}=\$ 40 /$ bunch, $\mathrm{Qs}=6$ (million bunches)
- $P=\$ 60, Q s=15$

\% change Qs

15-6
(6+15)/2

x 100

$\frac{9}{10.5} \times 100=86 \%$

\% change P

60-40

$(60+40) / 2$

x 100

20

x 100
 $=40 \%$

50

supply elasticity

\% change in Qs

\% change in \mathbf{P}

86\%

$$
=2.15
$$

40\%

- if price rises 1%,

Qs rises 2.15\%

- unit-free measure
- depends on points chosen on the supply curve

if price elasticity of supply

- = 1
unit elastic
\% change Qs = \% change P
- > 1
elastic
\% change Qs > \%change P
sensitive to P changes
< 1
inelastic
\% change Qs < \%change P not sensitive to P changes

inelastic supply

- steep curve

big change in P small change in Qs

Q

perfectly inelastic supply

- vertical line

P

change in P no change in Qs

S
Q

elastic supply

- flatter curve

small change in P big change in Qs

perfectly elastic supply

- horizontal line

any change in P
 Qs falls to zero

Q

what makes supply elastic or inelastic?

1. production possibilities

Can you make more easily?
NO
then supply is inelastic
YES
then supply is elastic

example

- oceanfront property
- can't make more

- inelastic supply
- salt
- almost an infinite amount
- elastic supply

2. time since price change

- it takes time to produce
- if a short time,
supply is inelastic
- if a long time
supply is elastic

example

- hotel rooms
- takes time to build
- supply inelastic in short-run,

elastic in long-run

3. Can you store it easily/cheaply?

- if yes, then elastic
- if no, then inelastic

example

- bananas
- storage time limited
- supply inelastic

III. Income Elasticity of Demand

- impact of income changes on demand
- size of shift
in the demand curve
when income changes

equation

\% change in Qd

\% change in income

- > 0 normal good
- < 0 inferior good

example: jewelry

- income increases 10\%
- Qd jewelry increases 35\%
income elasticity
\% change in Qd jewelry \% change in income

$$
\frac{35 \%}{10 \%}=3.5
$$

IV. Cross Elasticity of Demand

- impact of price change of
substitutes or complements
- size of shift
in demand curve
when price of a related good changes

equation

\% change in Qd

\% change in P of related good

cross elasticity

- > 0 for substitutes
- < 0 for complements

example: Peanut butter

- what happens to Qd of PB, when price of jelly rises?
- PB \& jelly are complements
price jelly = \$3 jar, Qd PB = 2 jars per month
price jelly = \$4 jar, Qd PB = 1 jar per month

\% change in Qd PB

1 jar-2 jars
1.5 jars

\% change in P of jelly

$$
\frac{\$ 4-\$ 3}{\$ 3.5}
$$

cross price elasticity of PB

- with respect to price of jelly

\% change in Qd PB

\% change in P jelly

- 66.7\%

$$
-2.33
$$

28.6\%

example: Peanut butter

- what happens to Qd of PB, when price of butter rises?
- PB \& butter are substitutes

P butter = \$1 stick, Qd PB = $\mathbf{2}$ jars per month
 P butter = \$3 stick, Qd PB = 2.2 jars per mo.

\% change in Qd PB

2.2 jar-2 jars 2.1 jars $\times 100=9.5 \%$

\% change in P of butter

\$3-\$1
= 100\% \$2

cross price elasticity of PB

- with respect to price of butter

\% change in Qd PB

\% change in P butter
9.5\% 100\%

summary

- law of demand \& supply
- direction of change in Qd/Qs when P changes
- price elasticity
- how large are these Qd/Qs changes?
- cross/income elasticity
- size of shift in demand curve

