Chapter 3: Elasticity

- Price elasticity
 - demand
 - supply
- Cross elasticity
- Income elasticity

Basic idea

• We know when P

Qd \checkmark Qs \uparrow

holding other factors constant

but how much?

- if price doubles how much does Qd fall?
 - by 10%
 - by 50%
 - by 300%?
- price elasticity tells us

I. Price Elasticity of Demand

example

- mocha latte at Starbucks
- price rises from \$3 to \$5 per cup
- Qd falls from 15 to 5 cups per hr.

equation

% change in Qd % change in P

5 cups - 15 cups (5+15)/2 cups x 100

-10 cups x 100 = -100% 10 cups

example

\$2 \$4 x 100 = 50%

demand elasticity

% change in Qd

% change in P

If price of latte increases 1%,
 Qd of latte <u>decreases</u> 2%

demand elasticity

- a unit-free measure
 - compare all goods & services
- changes for different points on the demand curve

if price elasticity of demand (absolute value)

• = 1

unit elastic

% change Qd = % change P

• > 1

elastic

% change Qd > %change P sensitive to P changes

• <1

inelastic
% change Qd < %change P
not sensitive to P changes</pre>

elastic demand

small change in P big change in Qd

inelastic demand (<1) • steep curve</pre>

perfectly inelastic demand

vertical line

perfectly elastic demand

horizontal line

effect on total revenue

- total revenue (TR)
 - = P x Q
- if demand is elastic,
 - TR falls as price rises
- if demand is inelastic,
 - TR rises as price rises

example: cup of latte

- initial P=\$3, Qd = 15.
 - TR = \$3 x 15 = \$45
- new P = \$5, Qd = 5
 TR = \$5 x 5 = \$25
- demand for latte is elastic
 TR falls as P rises

what makes demand elastic or inelastic?

- 1. is it a luxury or necessity
 - if luxury, demand is elastic
 - if necessity, demand is inelastic

example

- mocha latte at Starbucks is a luxury
- a liver transplant is not

2. definition of good

 latte at Starbucks, narrow definition= many substitutes (other brands of coffee, tea) demand is elastic

 coffee in general, broad definition = fewer substitutes demand is less elastic

- 3. time since price change
 - short time
 - no time to adjust, demand is inelastic
 - long time
 - time to adjust,
 - demand is elastic

example

- Price of gas per gallon
- the day price rises
 - demand inelastic
- years later
 - demand much more elastic as carpool or buy smaller car

factors 1-3

all get at same issue:

- can consumers substitute a cheaper good easily?
 - if yes, demand is elastic
 - if no, demand is inelastic

- 4. Is item large part of your budget?
 - if yes, then demand elastic (forced to change behavior)
 - if no, then demand inelastic
 (no need to change behavior)

example

- soap
 - if price doubles, will you buy less?
- rent
 - if rent doubles?
 - -- stay on campus?
 - -- more roommates?

II. Price Elasticity of Supply

% change in Qs

% change in P

example

- bunch of roses
- P = \$40/bunch, Qs = 6 (million bunches)
- P = \$60, Qs = 15

% change Qs

15 - 6 (6+15)/2 x 100

9 10.5 x 100 = 86%

% change P

60 - 40 (60+40)/2 x 100

20 50 x 100 = 40%

supply elasticity

% change in Qs

% change in P

• if price rises 1%,

Qs rises 2.15%

- unit-free measure
- depends on points chosen on the supply curve

if price elasticity of supply

• = 1

unit elastic

% change Qs = % change P

• >1

elastic

% change Qs > %change P sensitive to P changes

• <1

inelastic
% change Qs < %change P
not sensitive to P changes</pre>

inelastic supply

steep curve

perfectly inelastic supply

vertical line

elastic supply

• flatter curve

small change in P big change in Qs

perfectly elastic supply

horizontal line

what makes supply elastic or inelastic?

1. production possibilities

Can you make more easily?

NO

then supply is inelastic

YES

then supply is elastic

example

- oceanfront property
 - can't make more
 - inelastic supply
- salt
 - almost an infinite amount
 - elastic supply

- 2. time since price change
 - it takes time to produce
 - if a short time,
 - supply is inelastic
 - if a long time

supply is elastic

example

- hotel rooms
 - takes time to build
 - supply inelastic in short-run, elastic in long-run

- 3. Can you store it easily/cheaply?
 - if yes, then elastic
 - if no, then inelastic

example

- bananas
 - storage time limited
 - supply inelastic

III. Income Elasticity of Demand

- impact of income changes on demand
- size of shift

in the demand curve

when income changes

equation

% change in Qd % change in income

- > 0 normal good
- < 0 inferior good</p>

example: jewelry

- income increases 10%
- Qd jewelry increases 35%

income elasticity

% change in Qd jewelry % change in income

IV. Cross Elasticity of Demand

- impact of price change of substitutes or complements
- size of shift
 - in demand curve
 - when price of a related good changes

equation

% change in Qd % change in P of related good

cross elasticity

- > 0 for substitutes
- < 0 for complements</p>

example: Peanut butter

- what happens to Qd of PB, when price of jelly rises?
- PB & jelly are complements

price jelly = \$3 jar, Qd PB = 2 jars per month price jelly = \$4 jar, Qd PB = 1 jar per month

% change in Qd PB 1 jar - 2 jars 1.5 jars x 100 = - 66.7% % change in P of jelly \$4 - \$3 x 100 \$3.5 = 28.6%

cross price elasticity of PB

• with respect to price of jelly

% change in Qd PB % change in P jelly - 66.7% = - 2.33 28.6%

example: Peanut butter

- what happens to Qd of PB, when price of butter rises?
- PB & butter are substitutes

P butter = \$1 stick, Qd PB = 2 jars per month P butter = \$3 stick, Qd PB = 2.2 jars per mo.

% change in Qd PB 2.2 jar - 2 jars 2.1 jars x 100 = 9.5% % change in P of butter

\$3 - \$1 \$2 x 100 = 100%

cross price elasticity of PB

• with respect to price of butter

% change in Qd PB % change in P butter 9.5% = .095 100%

summary

- law of demand & supply
 - direction of change in Qd/Qs when P changes
- price elasticity
 - how large are these Qd/Qs changes?
- cross/income elasticity
 - size of shift in demand curve