Basic Biostatistics Statistics for Public Health Practice

B. Burt Gerstman

Chapter 5: Probability Concepts

Basic Biostat

5: Probability Concepts

© 2008 Jones and Bartlett Publishers

In Chapter 5:

- 5.1 What is Probability?
- 5.2 Types of Random Variables
- 5.3 Discrete Random Variables
- 5.4 Continuous Random Variables
- 5.5 More Rules and Properties of Probability

Definitions

- Random variable ≡ a numerical quantity that takes on different values depending on chance
- Population ≡ the set of all possible values for a random variable
- Event ≡ an outcome or set of outcomes
- Probability = the relative frequency of an event in the *population* ... alternatively... the proportion of times an event is *expected* to occur in the long run

Example

- In a given year: 42,636 traffic fatalities (events) in a population of N = 293,655,000
- Random sample
 population
- Probability of event
 = relative freq in pop
 - = 42,636 / 293,655,000
 - = .0001452
 - ≈ 1 in 6887

Example: Probability

- Assume, 20% of population has a condition
- Repeatedly sample population

Random Variables

- Random variable ≡ a numerical quantity that takes on different values depending on chance
- Two types of random variables
 - Discrete random variables (countable set of possible outcomes)
 - Continuous random variable (unbroken chain of possible outcomes)

Example: Discrete Random Variable

- Treat 4 patients with a drug that is 75% effective
- Let X ≡ the [variable] number of patients that respond to treatment
- X is a discrete random variable can be either 0, 1, 2, 3, or 4 (a countable set of possible outcomes)

Example: Discrete Random Variable

- Discrete random variables are understood in terms of their probability mass function (pmf)
- *pmf* ≡ a mathematical function that assigns probabilities to all possible outcomes for a discrete random variable.
- This table shows the *pmf* for our "four patients" example:

Basic Biostat

The "four patients" *pmf* can also be shown graphically

Basic Biostat

10 © 2008 Jones and Bartlett Publishers

Area on *pmf* = Probability

- Areas under pmf graphs correspond to probability
- For example:
 Pr(X = 2)
 - = shaded rectangle
 - = height × base
 - = .2109 × 1.0
 - = .2109

"Four patients" pmf

Number of successes

Example: Continuous Random Variable

- Continuous random variables have an infinite set of possible outcomes
- Example: generate random numbers with this spinner ⇒
- Outcomes form a continuum between 0 and 1

Example Continuous Random Variable

- probability density function (pdf) ≡ a mathematical function that assigns probabilities for continuous random variables
- The probability of any exact value is 0
- BUT, the probability of a range is the area under the pdf "curve" (bottom)

Example Continuous Random Variable

- Area = probabilities
- The *pdf* for the random spinner variable ⇒
- The probability of a value between 0 and $0.5 Pr(0 \le X \le 0.5)$
 - = shaded rectangle
 - = height × base
 - $= 1 \times 0.5 = 0.5$

pdfs come in various shapes here are examples

Basi

© 2008 Jones and Bartlett Publishers

Areas Under the Curve

- *pdf* curves are analogous to probability histograms
- AREAS = probabilities
- Top figure: histogram, ages ≤ 9 shaded
- Bottom figure: *pdf*, ages ≤ 9 shaded
- Both represent proportior of population ≤ 9

Properties of Probabilities

- Property 1. Probabilities are always between 0 and 1
- Property 2. The sample space (S) for a random variable represents all possible outcomes and must sum to 1 exactly.
- Property 3. The probability of the complement of an event ("NOT the event")= 1 MINUS the probability of the event.
- **Property 4.** Probabilities of **disjoint events** can be added.

Properties of Probabilities In symbols

- **Property 1.** $0 \le Pr(A) \le 1$
- **Property 2.** Pr(*S*) = 1
- **Property 3.** $Pr(\bar{A}) = 1 Pr(A)$, \bar{A} represents the complement of A
- Property 4. Pr(A or B) = Pr(A) + Pr(B)
 when A and B are disjoint

Properties 1 & 2 Illustrated

Property 1. Note that all probabilities are between 0 and 1.

Property 2. The sample space sums to 1: Pr(S) = .0039 + .0469 + .2109 + .4219 + .3164 = 1

Basic Biostat

Property 3 ("Complements")

Let $A \equiv 4$ successes

"Four patients" pmf

Then, $\overline{A} \equiv$ "not A" = "3 or fewer successes"

Property of complements:

$$Pr(\bar{A}) = 1 - Pr(A)$$

= 1 - 0.3164
= 0.6836

Basic Biostat

5: Probability Concepts

Property 4 (Disjoint Events)

"Four patients" pmf

Let *A* represent 4 successes Let *B* represent 3 successes A & B are disjoint The probability of observing 3 *or* 4:

$$Pr(A \text{ or } B)$$

= $Pr(A) + Pr(B)$

= 0.3164 + 0.4129

= 0.7293

5: Probability Concepts

Cumulative Probability Left "tail"

 Cumulative probability 0.5 = probability of x or less 0.4 • Denoted $Pr(X \leq x)$ Probability 0.3 Corresponds to area in ulletleft tail 0.2 • Example: .2109 0.1 $Pr(X \leq 2)$.0469 0030 = area in left tail 0 2 3 4 = .0039 + .0469 + .2109Number of successes = 0.2617

Right "tail"

- Probabilities greater than a value are denoted Pr(X > x)
- Complement of cumulative probability
- Corresponds to area in right tail of distribution
- Example (4 patients *pmf*): Pr (X > 3)
 - = complement of $Pr(X \le 2)$
 - = 1 0.2617
 - = .7389

Number of successes