Pasic Riostrilistics

 Statistics for Public Health Practice

 Statistics for Public Health Practice}
B. Burt Gerstman

In Chapter 5:

5.1 What is Probability?
5.2 Types of Random Variables
5.3 Discrete Random Variables
5.4 Continuous Random Variables
5.5 More Rules and Properties of Probability

Definitions

- Random variable \equiv a numerical quantity that takes on different values depending on chance
- Population \equiv the set of all possible values for a random variable
- Event \equiv an outcome or set of outcomes
- Probability \equiv the relative frequency of an event in the population ... alternatively... the proportion of times an event is expected to occur in the long run

Example

- In a given year: 42,636 traffic fatalities (events) in a population of $N=$ 293,655,000
- Random sample population
- Probability of event = relative freq in pop
= 42,636 / 293,655,000
= . 0001452
≈ 1 in 6887

Example: Probability

- Assume, 20\% of population has a condition
- Repeatedly sample population
- The proportion of observations positive for the condition approaches 0.2 after a very large number of trials

$\stackrel{T r i a l}{ } 1$

Random Variables

- Random variable \equiv a numerical quantity that takes on different values depending on chance
- Two types of random variables
- Discrete random variables (countable set of possible outcomes)
- Continuous random variable (unbroken chain of possible outcomes)

Example:

Discrete Random Variable

- Treat 4 patients with a drug that is 75% effective
- Let $X \equiv$ the [variable] number of patients that respond to treatment
- X is a discrete random variable can be either 0 , $1,2,3$, or 4 (a countable set of possible outcomes)

Example:

Discrete Random Variable

- Discrete random variables are understood in terms of their probability mass function (pmf)
- pmf \equiv a mathematical function that assigns probabilities to all possible outcomes for a discrete random variable.
- This table shows the pmf for our "four patients" example:

x	0	1	2	3	4
$\operatorname{Pr}(X=x)$	0.0039	0.0469	0.2109	0.4219	0.3164

The "four patients" pmf can also be shown graphically

Area on $p m f=$ Probability

- Areas under pmf graphs correspond to probability
- For example:
$\operatorname{Pr}(\mathrm{X}=2)$
= shaded rectangle
$=$ height \times base
$=.2109 \times 1.0$
$=.2109$
"Four patients" pmf

Example:

Continuous Random Variable

- Continuous random variables have an infinite set of possible outcomes
- Example: generate random numbers with this spinner \Rightarrow
- Outcomes form a continuum between 0 and 1

Example

Continuous Random Variable

- probability density function (pdf) ミ a mathematical function that assigns probabilities for continuous random variables
- The probability of any exact value is 0
- BUT, the probability of a range is the area under the pdf "curve" (bottom)

Example

Continuous Random Variable

- Area = probabilities
- The pdf for the random spinner variable \Rightarrow
- The probability of a value between 0 and $0.5 \operatorname{Pr}(0 \leq X \leq 0.5)$
$=$ shaded rectangle
$=$ height \times base
$=1 \times 0.5=0.5$

pdfs come in various shapes here are examples

Uniform pdf

Normal pdf

Chi-square pdf

Exercise 5.13 pdf

Areas Under the Curve

- pdf curves are analogous to probability histograms
- AREAS = probabilities
- Top figure: histogram, ages ≤ 9 shaded
- Bottom figure: pdf, ages ≤ 9 shaded
- Both represent proportior of population ≤ 9

Properties of Probabilities

- Property 1. Probabilities are always between 0 and 1
- Property 2. The sample space (S) for a random variable represents all possible outcomes and must sum to 1 exactly.
- Property 3. The probability of the complement of an event ("NOT the event")= 1 MINUS the probability of the event.
- Property 4. Probabilities of disjoint events can be added.

Properties of Probabilities In symbols

- Property 1. $0 \leq \operatorname{Pr}(A) \leq 1$
- Property 2. $\operatorname{Pr}(S)=1$
- Property 3. $\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$, \bar{A} represents the complement of A
- Property 4. $\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ when A and B are disjoint

Basic Biostat

5: Probability Concepts

Properties 1 \& 2 Illustrated

Property 1. Note that all
"Four patients" pmf
 probabilities are between 0 and 1.

Property 2. The sample space sums to 1:
$\operatorname{Pr}(\mathrm{S})=.0039+.0469+$
$.2109+.4219+.3164=1$

Property 3 ("Complements")

Let A $\equiv 4$ successes

"Four patients" pmf

Then, $\bar{A} \equiv$ "not $\mathrm{A} "=$ " 3 or fewer successes" Property of complements:
$\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A)$
$=1-0.3164$
$=0.6836$

Property 4 (Disjoint Events)

"Four patients" pmf

Let A represent 4 successes Let B represent 3 successes

A \& B are disjoint
The probability of observing 3 or 4: $\operatorname{Pr}(\mathrm{A}$ or B$)$
$=\operatorname{Pr}(A)+\operatorname{Pr}(B)$
$=0.3164+0.4129$
$=0.7293$

Cumulative Probability

 Left "tail"- Cumulative probability = probability of x or less
- Denoted $\operatorname{Pr}(X \leq x)$
- Corresponds to area in left tail
- Example:
$\operatorname{Pr}(X \leq 2)$
= area in left tail
$=.0039+.0469+.2109$

$=0.2617$

Right "tail"

- Probabilities greater than a value are denoted $\operatorname{Pr}(X>x)$
- Complement of cumulative probability
- Corresponds to area in right tail of distribution
- Example (4 patients pmf): $\operatorname{Pr}(\mathrm{X}>3)$
= complement of $\operatorname{Pr}(X \leq 2)$
$=1-0.2617$
= . 7389

