Top-Down Network Design

Chapter Four

Characterizing Network Traffic

Copyright 2010 Cisco Press & Priscilla Oppenheimer
Network Traffic Factors

- Traffic flow
- Location of traffic sources and data stores
- Traffic load
- Traffic behavior
- Quality of Service (QoS) requirements
User Communities

<table>
<thead>
<tr>
<th>User Community Name</th>
<th>Size of Community (Number of Users)</th>
<th>Location(s) of Community</th>
<th>Application(s) Used by Community</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Stores

<table>
<thead>
<tr>
<th>Data Store</th>
<th>Location</th>
<th>Application(s)</th>
<th>Used by User Community(or Communities)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic Flow

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination 1 MB/sec</th>
<th>Destination 2 MB/sec</th>
<th>Destination 3 MB/sec</th>
<th>Destination MB/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic Flow Example

Library and Computing Center

30 Library Patrons (PCs)
30 Macs and 60 PCs in Computing Center

Server Farm

10-Mbps Metro Ethernet to Internet

App 1 108 Kbps
App 2 60 Kbps
App 3 192 Kbps
App 4 48 Kbps
App 7 400 Kbps
Total 808 Kbps

App 1 48 Kbps
App 2 32 Kbps
App 3 96 Kbps
App 4 24 Kbps
App 5 300 Kbps
App 6 200 Kbps
App 8 1200 Kbps
Total 1900 Kbps

Arts and Humanities

25 Macs
50 PCs

Math and Sciences

50 PCs

Business and Social Sciences

50 PCs

30 Library Patrons (PCs)
30 Macs and 60 PCs in Computing Center

App 2 20 Kbps
App 3 96 Kbps
App 4 24 Kbps
App 9 80 Kbps
Total 220 Kbps

App 1 30 Kbps
App 2 20 Kbps
App 3 60 Kbps
App 4 16 Kbps
Total 126 Kbps

App 2 20 Kbps
App 3 96 Kbps
App 4 24 Kbps
App 9 80 Kbps
Total 220 Kbps

App 1 108 Kbps
App 2 60 Kbps
App 3 192 Kbps
App 4 48 Kbps
App 7 400 Kbps
Total 808 Kbps

App 1 48 Kbps
App 2 32 Kbps
App 3 96 Kbps
App 4 24 Kbps
App 5 300 Kbps
App 6 200 Kbps
App 8 1200 Kbps
Total 1900 Kbps

App 1 30 Kbps
App 2 20 Kbps
App 3 60 Kbps
App 4 16 Kbps
Total 126 Kbps
Types of Traffic Flow

- Terminal/host
- Client/server
- Thin client
- Peer-to-peer
- Server/server
- Distributed computing
Traffic Flow for Voice over IP

- The flow associated with transmitting the audio voice is separate from the flows associated with call setup and teardown.
 - The flow for transmitting the digital voice is essentially peer-to-peer.
 - Call setup and teardown is a client/server flow
 - A phone needs to talk to a server or phone switch that understands phone numbers, IP addresses, capabilities negotiation, and so on.
Network Applications
Traffic Characteristics

<table>
<thead>
<tr>
<th>Name of Application</th>
<th>Type of Traffic Flow</th>
<th>Protocol(s) Used by Application</th>
<th>User Communities That Use the Application</th>
<th>Data Stores (Servers, Hosts, and so on)</th>
<th>Approximate Bandwidth Requirements</th>
<th>QoS Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traffic Load

• To calculate whether capacity is sufficient, you should know:
 – The number of stations
 – The average time that a station is idle between sending frames
 – The time required to transmit a message once medium access is gained

• That level of detailed information can be hard to gather, however
Size of Objects on Networks

- Terminal screen: 4 Kbytes
- Simple e-mail: 10 Kbytes
- Simple web page: 50 Kbytes
- High-quality image: 50,000 Kbytes
- Database backup: 1,000,000 Kbytes or more
Traffic Behavior

- **Broadcasts**
 - All ones data-link layer destination address
 - FF: FF: FF: FF: FF: FF
 - Doesn’t necessarily use huge amounts of bandwidth
 - But does disturb every CPU in the broadcast domain

- **Multicasts**
 - First bit sent is a one
 - 01:00:0C:CC:CC:CC (Cisco Discovery Protocol)
 - Should just disturb NICs that have registered to receive it
 - Requires multicast routing protocol on internetworks
Network Efficiency

- Frame size
- Protocol interaction
- Windowing and flow control
- Error-recovery mechanisms
QoS Requirements

• ATM service specifications
 – Constant bit rate (CBR)
 – Realtime variable bit rate (rt-VBR)
 – Non-realtime variable bit rate (nrt-VBR)
 – Unspecified bit rate (UBR)
 – Available bit rate (ABR)
 – Guaranteed frame rate (GFR)
QoS Requirements per IETF

- IETF integrated services working group specifications
 - Controlled load service
 - Provides client data flow with a QoS closely approximating the QoS that same flow would receive on an unloaded network
 - Guaranteed service
 - Provides firm (mathematically provable) bounds on end-to-end packet-queuing delays
QoS Requirements per IETF

- IETF differentiated services working group specifications
 - RFC 2475
 - IP packets can be marked with a differentiated services codepoint (DSCP) to influence queuing and packet-dropping decisions for IP datagrams on an output interface of a router
Summary

• Continue to use a systematic, top-down approach

• Don’t select products until you understand network traffic in terms of:
 – Flow
 – Load
 – Behavior
 – QoS requirements
Review Questions

• List and describe six different types of traffic flows.
• What makes traffic flow in voice over IP networks challenging to characterize and plan for?
• Why should you be concerned about broadcast traffic?
• How do ATM and IETF specifications for QoS differ?