Top-Down Network Design

Chapter Two

Analyzing Technical Goals and Tradeoffs

Technical Goals

- Scalability
- Availability
- Performance
- Security
- Manageability
- Usability
- Adaptability
- Affordability

Scalability

- Scalability refers to the ability to grow
- Some technologies are more scalable
 - Flat network designs, for example, don't scale well
- Try to learn
 - Number of sites to be added
 - What will be needed at each of these sites
 - How many users will be added
 - How many more servers will be added

Availability

- Availability can be expressed as a percent uptime per year, month, week, day, or hour, compared to the total time in that period
 - For example:
 - 24/7 operation
 - Network is up for 165 hours in the 168-hour week
 - Availability is 98.21%
- Different applications may require different levels
- Some enterprises may want 99.999% or "Five Nines" availability

Availability Downtime in Minutes

	Per Hour	Per Day	Per Week	Per Year
99.999%	.0006	.01	.10	5
99.98%	.012	.29	2	105
99.95%	.03	.72	5	263
99.90%	.06	1.44	10	526
99.70%	.18	4.32	30	1577

99.999% Availability May Require Triple Redundancy

• Can the customer afford this?

Availability

- Availability can also be expressed as a mean time between failure (MTBF) and mean time to repair (MTTR)
- Availability = MTBF/(MTBF + MTTR)
 - For example:
 - The network should not fail more than once every 4,000 hours (166 days) and it should be fixed within one hour
 - 4,000/4,001 = 99.98% availability

Network Performance

- Common performance factors include
 - Bandwidth
 - Throughput
 - Bandwidth utilization
 - Offered load
 - Accuracy
 - Efficiency
 - Delay (latency) and delay variation
 - Response time

Bandwidth Vs. Throughput

- Bandwidth and throughput are not the same thing
- Bandwidth is the data carrying capacity of a circuit
 - Usually specified in bits per second
- Throughput is the quantity of error free data transmitted per unit of time
 - Measured in bps, Bps, or packets per second (pps)

Bandwidth, Throughput, Load

Offered Load

Other Factors that Affect Throughput

- The size of packets
- Inter-frame gaps between packets
- Packets-per-second ratings of devices that forward packets
- Client speed (CPU, memory, and HD access speeds)
- Server speed (CPU, memory, and HD access speeds)
- Network design
- Protocols
- Distance
- Errors
- Time of day, etc., etc., etc.

Throughput Vs. Goodput

- You need to decide what you mean by throughput
- Are you referring to bytes per second, regardless of whether the bytes are user data bytes or packet header bytes
 - Or are you concerned with application-layer throughput of user bytes, sometimes called "goodput"
 - In that case, you have to consider that bandwidth is being "wasted" by the headers in every packet

Performance (continued)

- Efficiency
 - How much overhead is required to deliver an amount of data?
 - How large can packets be?
 - Larger better for efficiency (and goodput)
 - But too large means too much data is lost if a packet is damaged
 - How many packets can be sent in one bunch without an acknowledgment?

Efficiency

Small Frames (Less Efficient)

Large Frames (More Efficient)

Delay from the User's Point of View

Response Time

- A function of the application and the equipment the application is running on, not just the network
- Most users expect
 to see something on
 the screen in 100 to
 200 milliseconds

Delay from the Engineer's Point of View

- Propagation delay
 - A signal travels in a cable at about 2/3 the speed of light in a vacuum
- Transmission delay (also known as serialization delay)
 - Time to put digital data onto a transmission line
 - For example, it takes about 5 ms to output a 1,024 byte packet on a 1.544 Mbps T1 line
- Packet-switching delay
- Queuing delay

Queuing Delay and Bandwidth Utilization

 Number of packets in a queue increases exponentially as utilization increases

Example

- A packet switch has 5 users, each offering packets at a rate of 10 packets per second
- The average length of the packets is 1,024 bits
- The packet switch needs to transmit this data over a 56-Kbps WAN circuit
 - Load = 5 x 10 x 1,024 = 51,200 bps
 - Utilization = 51,200/56,000 = 91.4%
 - Average number of packets in queue = (0.914)/(1-0.914) = 10.63 packets

Delay Variation

- The amount of time average delay varies
 - Also known as jitter
- Voice, video, and audio are intolerant of delay variation
- So forget everything we said about maximizing packet sizes
 - There are always tradeoffs
 - Efficiency for high-volume applications versus low and non-varying delay for multimedia

Security

- Focus on requirements first
- Detailed security planning later (Chapter 8)
- Identify network assets
 - Including their value and the expected cost associated with losing them due to a security problem
- Analyze security risks

Network Assets

- Hardware
- Software
- Applications
- Data
- Intellectual property
- Trade secrets
- Company's reputation

Security Risks

- Hacked network devices
 - Data can be intercepted, analyzed, altered, or deleted
 - User passwords can be compromised
 - Device configurations can be changed
- Reconnaissance attacks
- Denial-of-service attacks

Manageability

- Fault management
- Configuration management
- Accounting management
- Performance management
- Security management

Usability

- Usability: the ease of use with which network users can access the network and services
- Networks should make users' jobs easier
- Some design decisions will have a negative affect on usability:
 - Strict security, for example

Adaptability

- Avoid incorporating any design elements that would make it hard to implement new technologies in the future
- Change can come in the form of new protocols, new business practices, new fiscal goals, new legislation
- A flexible design can adapt to changing traffic patterns and Quality of Service (QoS) requirements

Affordability

- A network should carry the maximum amount of traffic possible for a given financial cost
- Affordability is especially important in campus network designs
- WANs are expected to cost more, but costs can be reduced with the proper use of technology
 - Quiet routing protocols, for example

Network Applications Technical Requirements

Name of Application	Cost of Downtime	Acceptable MTBF	Acceptable MTTR	Throughput Goal	Delay Must be Less Than:	Delay Variation Must be Less Than:

Making Tradeoffs

 Scalability 	20	
 Availability 	30	
 Network performance 	15	
 Security 	5	
 Manageability 	5	
 Usability 	5	
 Adaptability 	5	
 Affordability 	15	
Total (must add up to 100)	100	

Summary

- Continue to use a systematic, top-down approach
- Don't select products until you understand goals for scalability, availability, performance, security, manageability, usability, adaptability, and affordability
- Tradeoffs are almost always necessary

Review Questions

- What are some typical technical goals for organizations today?
- How do bandwidth and throughput differ?
- How can one improve network efficiency?
- What tradeoffs may be necessary in order to improve network efficiency?