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TAYLOR’STHEOREM

n(x − a) + Rn
n!

n

+ f (x)

3!

2!
f (x) = f (a) + f ' (a)(x − a) +

f ' ' (x)
(x − a)2

+
f ' '( x)

(x − a)3+ K

If a function f and its first n+1 derivatives are continuous on an interval  

containing a and x, then the value of the function at x is given by:

Where the remainder Rn is defined as:

x

2

a
n f (t)dt

n!

(n+1)


f (n)(x − t)n

R =



Taylor’s Series (1)

The Taylor series provides a means to predict the function value at one point  

in terms of the function values and its derivatives at another point.

The theorem states that any smooth functioncan be approximated as a  

polynomial.

Function involving transcendental and

trigonometric function will require an

infinite number of terms in the Taylor

Series to obtain accuratesolution.
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Taylor’s Series (2)
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Example2
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Example 2(cont’d)
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Using Taylor Series to Estimate TruncationErrors

By Mean Value Theorem, it can also be written as:

Note that:

 lies between xi and xi+1  

f(n+1) is usually notknown

But we can control h,and hence have some control over the error  

(remainder) associated with the truncated Taylor’spolynomial.

x
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a
n f (t)dt

n!

(n+1)


f (n)(x − t)n

R =



Taylor’s Series (3)
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Example3
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Numerical Differentiation – First Derivatives

The first order expression of the derivative obtained from Taylors series  

expansion may be writtenas:

i
i

i

+O(h)
f 

h
or f ' (x ) =

f ' (x ) = +O(xi+1− xi)
xi+1 − xi

f (xi+1) − f (xi)

Finite dividedifference

Taylor Series can also be expanded backward to calculate a previous  

value, leading to the formulation offirst backward difference

i

f (xi) − f (xi−1)  

h
f ' (x ) =

The centred difference is givenas:

2
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2h
i

i
−O(h )f '(x )=

f (xi+1)− f (xi−1)
Truncation error is ofO(h2)

Truncation error O(h)



Graphical Depiction Forward, Backwardand  

Centered Finite Difference

Forward  

Difference
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Backward  

Difference

Central  

Difference



Stability andConditioning

Then, relative error:

The relative error of xis:

and a conditionnumber can be defined as:

Condition number < 1 indicate that the numerical method is well‐attenuated.  

A condition number much greater than 1 shows the method is very ill‐  

conditioned.

The condition of a mathematical formulation relates to its sensitivity to  

changes in its inputvalues.

We say a computation is numerically unstable if the uncertainty in the input  

values is grossly magnified bythe numerical method.

Using first‐orderTaylor series
f (x)= f (~x)+ f '(~x)(x−~x)

f (~x)

f (x)− f (~x)


f '(~x)(x−~x)

f (x)

(x−~x)
~x

~xf'(~x)

f (~x)
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Example

For conditionnumber

For

Thus the function is ill‐conditionedfor

The major cause is the derivativeof the function which approaches  

infinity as x approaches/2.

2 2
Compute and interpret the condition number for f(x) = tan(x) for ~x=   0.1(


)

tan ~x
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Solution:
~x(1/cos2 x)

Condition number =

~x=

+ 0.1( ) ,

2 2 − 6.314
=

1.9279 40.86
= −11.2

~x=

+ 0.1(


),  

2 2 64.66
conditionnumber = 1.58654053

= −101

2 2

~x =

 0.1( )



The true value for the result is 11.174755..., which is exactly g(500) = 11.1748  

after rounding the result to 4decimal digits.

Subtractive Cancellation

Numerical Stability is affected by the number of the significant digits  

the computer keeps on, if we use a machine that keeps on the first  

four floating‐point digits, a good example on loss of significance is  

given by these two equivalentfunctions
f(x) ≡g(x)
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Ways to Reduce NumericalErrors

• The total numerical error is the sum of truncation and round‐off  

errors.

• In general the only way to minimize round‐offerrors is to increase the  

number of significant figures (use doubleprecision).

• Round‐offerror will increase due to increase in the number of  

computations.

• Truncation error associated with discretization can be reduced by  

reducing the step size. Butthis will increase the computation steps.

• Since modern computers can carry significant figures (by using double

precision, for example), a practical way to reduce numerical error is to

decrease step size, at the expense oflonger computing time.



Roots ofEquations

In some simple equations, roots can be solved analytically

But for many other equation, roots may only be solved numerically:
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This section will explore some numerical methods for finding roots of equations.
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Methods for Finding Roots ofEquations

1. GraphicalMethod

2. Bracketing Methods

a. Bisection Method

b. False‐Position Method

3. Open Methods

a. Newton‐Raphson Method

b. Secant Method



Graphical Method (1)

A simple method for gettingan estimate of the root of the equation f(x)=0 is  

to make a plot and observe where it crosses the xaxis.

The mathematical model is given asfollows:
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Visual inspection provides a rough estimateof  the root of14.



Graphical Method (2)

Number of roots in an interval
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Graphical Method (3)

SpecialCases:
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Bisection Method (1)
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BisectionMethod

c=(a+b)/2
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Bisection Method (2)
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BisectionMethod

Example 1
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False Position Method (1) ‐ regulafalsi
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False Position Method (2)
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False Position (Interpolation)Method

2nd Iteration

1st Iteration

b

a

xu

xl
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xr

f(xu)

f(xr)

f(xu)



Example 2

False Position Method

Correct to 4  

decimalplaces
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False Position Method

Example 2(cont’d)
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False Position Method

Example3
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Example 3(cont’d)

31



Bracketing vs OpenMethod
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The Newton‐RaphsonMethod
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The Newton‐RaphsonMethod

Example 4
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Example5
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Pitfalls of the Newton‐RaphsonMethod
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The Secant Method
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Example6

38



Example7
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Example7
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The Modified SecantMethod
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Example8

Use the modified secant method to estimate the root off(x) = e‐x‐x = 0
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Multiple Roots(1)
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Multiple Roots(2)
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Multiple Roots(3)
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Example9
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Example 9(cont’d)
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Example 9(cont’d)
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System of Nonlinear Equations(1)
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System of Nonlinear Equations(2)
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System of Nonlinear Equations(3)
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System of Nonlinear Equations(4)
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Example10
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FurtherReadings:

Numerical Methods for Engineers by SC Chapra and RPCanale, 2010  

Sixth Edition, McGraw‐Hill InternationalEdition.

Chapters 5 & 6.


