## MTS2A3 <br> Komputer \& Simulasi

## Kuliah 3 - Aljabar Matriks (Review)

Dr. Nurly Gofar<br>Dr. Alfrendo Satyanaga

Program Studi Magister Teknik Sipil
Program Pascasarjana
Universitas Bina Darma Palembang

## Concepts and Definitions

* A matrix is a rectangular array of numbers or functions enclosed in brackets; each such number or function is an entry or element of the matrix.


This matrix has 3 rows and 4 columns, thus is a $3 \times 4$ matrix.
Order of matrix: $3 \times 4$

* A vector is a matrix that has only one row or only one column.

:Square matrix (number of rows = number of columns)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad\left[\begin{array}{ccc}
e^{x} & -2 x & 2 e^{-x} \\
x^{2} & 3 x^{3} & x \\
x e^{x} & -e^{2 x} & x+1
\end{array}\right]
$$

## General notations

$$
\begin{aligned}
& \text { Capital } \\
& \begin{array}{l}
\text { Goldface letter } \\
\text { General } \\
\text { entry }
\end{array} \\
& \text { Array of all entries }
\end{aligned}
$$

General notations of an $m \times n$ rectangular matrix In the double-subscript notation for the entries, the first subscript denotes the row and the second the column in which the given entry stands.

General notations for vectors $\mathbf{a}=\left[a_{j}\right]$

## Main/Principal diagonal

Consider an $n \times n$ square matrix

$$
\left[\begin{array}{cccc}
a_{\mathrm{N} 1} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] .
$$

What consists of the main diagonal of a rectangular matrix?

- If $\mathbf{A}=\left[a_{i j}\right]$ is an $m \times n$ matrix, the main diagonal of $\mathbf{A}$ consists of the entries $a_{11}, a_{22}, a_{33}, \ldots$ denoted as

$$
\operatorname{diag} \mathbf{A}=\left(a_{11}, a_{22}, a_{33}, \ldots, a_{\min (m, n), \min (m, n)}\right)
$$

where $\min (m, n)$ stands for the minimum of $m$ and $n$.

In each of the following matrices, the main diagonal consists of $a$ and $b$.

$$
\left[\begin{array}{ll}
a & x \\
y & b
\end{array}\right] ; \quad\left[\begin{array}{lll}
a & x & p \\
y & b & q
\end{array}\right] ; \quad\left[\begin{array}{ll}
a & x \\
y & b \\
r & s
\end{array}\right]
$$

## Special matrices

Triangular matrix - either Lower triangular matrix (entries above main diagonal $=0$ ) or Upper triangular matrix (entries below main diagonal $=0$ ).

$$
\mathbf{L}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-4 & 3 & 0 \\
-7 & 4 & 4
\end{array}\right] \quad \mathbf{U}=\left[\begin{array}{ccc}
2 & 4 & 7 \\
0 & 3 & -4 \\
0 & 0 & 4
\end{array}\right]
$$

Diagonal matrix - entries off the main diagonal are all zero.

$$
\mathbf{D}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Identity matrix - a square matrix with entries on the main diagonal equal to 1 and all other entries equal to 0 .

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

$\mathbf{B}$ and $\mathbf{C}$ are NOT identity matrices.

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

identity matrix of size $\mathrm{n} \times \mathrm{n}$

Note that all the above special matrices are square matrices.
Zero/Null matrix - all entries are 0, denoted as $\mathbf{0}$.

## Transposition and Symmetry

The transpose $\mathbf{A}^{\top}$ of an $m x n$ matrix $\quad \mathbf{A}=\left[a_{j k}\right] \quad$ is the $n \times m$ matrix that has the first row of $\mathbf{A}$ as its first column, and second row of $\mathbf{A}$ as its second column, and so on.

$$
\begin{gathered}
\mathbf{A}^{\top}=\left[a_{k j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\cdot & \cdot & \ldots & \cdot \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right] \\
\mathbf{A}=\left[\begin{array}{ccc}
12 & 15 & 30 \\
4 & 10 & 12 \\
6 & 20 & 25
\end{array}\right] \quad \mathbf{A}^{\top}=\left[\begin{array}{ccc}
12 & 4 & 6 \\
15 & 10 & 20 \\
30 & 12 & 25
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad \mathbf{B}^{\top}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
& \mathbf{c}=\left[\begin{array}{l}
7 \\
1
\end{array}\right] \quad \mathbf{c}^{\top}=\left[\begin{array}{ll}
7 & 1
\end{array}\right]
\end{aligned}
$$

Equality of matrices: Two matrices $\mathbf{A}=\left[a_{j k}\right]$ and $\mathbf{B}=\left[b_{j k}\right]$ are equal, written $\mathbf{A}=\mathbf{B}$, if and only if they have the same size and the corresponding entries are equal, that is, $a_{11}=b_{11}, a_{12}=b_{12}$, and so on.

## Symmetric matrix: $\mathbf{A}$ is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$.

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
4 & 2 & -4 \\
7 & -4 & 3
\end{array}\right] \quad \mathbf{A}^{\top}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
4 & 2 & -4 \\
7 & -4 & 3
\end{array}\right]
$$

A must be a square matrix. Why?

Skew-symmetric matrix: $\mathbf{B}$ is skew symmetric if $\mathbf{B}^{\top}=-\mathbf{B}$.
$\mathbf{B}=\left[\begin{array}{ccc}1 & 4 & 7 \\ 4 & 2 & -4 \\ 7 & -4 & 3\end{array}\right] \quad \mathbf{B}^{\top}=\left[\begin{array}{ccc}1 & 4 & 7 \\ 4 & 2 & -4 \\ 7 & -4 & 3\end{array}\right]$
$\mathbf{B}$ must be a square matrix with main diagonal entries equal to zero. Why?

## Matrix Addition, Scalar Multiplication

* Addition/subtraction is defined only for matrices of the same size. Their sum/difference is obtained by adding/subtracting the corresponding entries:

$$
\mathbf{A} \pm \mathbf{B}=\left[a_{i j} \pm b_{i j}\right]
$$

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
-4 & 6 & 3 \\
0 & 1 & 2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
3 & 1 & 0
\end{array}\right] \\
\mathbf{A}+\mathbf{B} & =\left[\begin{array}{ccc}
-4+5 & 6+(-1) & 3+0 \\
0+3 & 1+1 & 2+0
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 3 \\
3 & 2 & 2
\end{array}\right] \\
\mathbf{A}-\mathbf{B} & =?
\end{aligned}
$$

The product of matrix A and scalar $c$, written $c \mathbf{A}$, is obtained by multiplying each entry in $\mathbf{A}$ by $c$.

$$
\mathbf{A}=\left[\begin{array}{ccc}
-4 & 6 & 3 \\
0 & 1 & 2
\end{array}\right] \quad \text { Then } 3 \mathbf{A}=\left[\begin{array}{ccc}
-12 & 18 & 9 \\
0 & 3 & 6
\end{array}\right]
$$

The followings are clear:

$$
\begin{aligned}
& 1 \mathbf{A}=\mathbf{A} \\
& (-1) \mathbf{A}=-\mathbf{A} \\
& c \mathbf{0}=\mathbf{0} \\
& 0 \mathbf{A}=\mathbf{0}
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \text { If } \mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
2 & 7 & 3
\end{array}\right], \text { and } \mathbf{B}=\left[\begin{array}{ccc}
5 & -6 & 1 \\
8 & 8 & 9
\end{array}\right] \\
& \text { then } 5 \mathbf{A}-2 \mathbf{B}
\end{aligned}=\left[\begin{array}{ccc}
-5 & 12 & -17 \\
-6 & 19 & -3
\end{array}\right] .
$$

## Properties of addition and scalar multiplication

For addition

$$
\begin{array}{lll}
\mathbf{A}+\mathbf{B} & =\mathbf{B}+\mathbf{A} & \text { (commutative law) } \\
(\mathbf{U}+\mathbf{V})+\mathbf{W} & =\mathbf{U}+(\mathbf{V}+\mathbf{W}) & \text { (associative law) } \\
\mathbf{A}+\mathbf{0} & =\mathbf{A} \\
\mathbf{A}+(-\mathbf{A}) & =\mathbf{0} &
\end{array}
$$

For scalar multiplication

$$
\begin{array}{ll}
c(\mathbf{A}+\mathbf{B}) & =c \mathbf{A}+c \mathbf{B} \\
(c+d) \mathbf{A} & =c \mathbf{A}+d \mathbf{A} \\
c(d \mathbf{A}) & \\
=(c d) \mathbf{A}
\end{array}
$$

For transposition

$$
\begin{array}{ll}
(\mathbf{A}+\mathbf{B})^{\top} & =\mathbf{A}^{\top}+\mathbf{B}^{\top} \\
(c \mathbf{A})^{\top} & =\varepsilon^{\top} \mathbf{A}^{\top \mathrm{TParata}^{2}}
\end{array}
$$

## Example

## If $\mathbf{A}$ and $\mathbf{B}$ are symmetric, show that $\mathbf{A}+\mathbf{B}$ is also symmetric.

Proof:

## Matrix Multiplication

The product of two matrices $\mathbf{B}$ and $\mathbf{C}$ (in this order) is defined as

$$
\mathbf{A}_{\mathrm{m} \times \mathrm{n}}=\mathbf{B}_{\mathrm{m} \times \mathrm{p}} \mathbf{C}_{\mathrm{p} \times \mathrm{n}}
$$

Note the product is only defined (or exist) when the second dimension of $\mathbf{B}$ (no. of columns) is the same as the first dimension of $\mathbf{C}$ (no. of rows).
The element of matrix $\mathbf{A}$ is determined as

$$
a_{j k}=\sum_{i=1}^{p} b_{j i} c_{i k}, \quad j=1 \text { to } \mathrm{m}, k=1 \text { to } \mathrm{n} .
$$

Why is matrix multiplication defined in this way? (Linear Transformation)

$$
\begin{aligned}
& a_{j k}=\sum_{i=1}^{p} b_{j i} c_{i k}=b_{j 1} c_{1 k}+b_{j 2} c_{2 k}+\cdots+b_{j p} c_{p k} \\
& j=1 \text { to } \mathrm{m}, k=1 \text { to } \mathrm{n}
\end{aligned}
$$

That is, to get $a_{j k}$, multiply each entry in the $j$ th row of $\mathbf{B}$ by the corresponding entry in the $k$ th column of $\mathbf{C}$ and then add these $p$ products.

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\cdot & \cdot & \ldots & \cdot \\
b_{j 1} & b_{j 2} & \ldots & b_{j p} \\
\cdot & \cdot & \ldots & \cdot \\
b_{m 1} & b_{m 2} & \ldots & b_{m p}
\end{array}\right]\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 k} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 k} & \ldots & c_{2 n} \\
\cdot & \cdot & \ldots & . & \ldots & \cdot \\
c_{p 1} & c_{p 2} & \ldots & c_{p k} & \ldots & c_{p n}
\end{array}\right]=\left[\begin{array}{ccc}
\ldots & \cdot & \ldots \\
\ldots & a_{j k} & \ldots \\
\ldots & \cdot & \ldots
\end{array}\right]
$$

## EXAMPLE

$\mathbf{B C}=\left[\begin{array}{ll}4 & 3 \\ 7 & 2 \\ 9 & 0\end{array}\right]\left[\begin{array}{ll}2 & 5 \\ 1 & 6\end{array}\right]=\left[\begin{array}{ll}4 \times 2+3 \times 1 & 4 \times 5+3 \times 6 \\ 7 \times 2+2 \times 1 & 7 \times 5+2 \times 6 \\ 9 \times 2+0 \times 1 & 9 \times 5+0 \times 6\end{array}\right]=\left[\begin{array}{ll}11 & 38 \\ 16 & 47 \\ 18 & 45\end{array}\right]$
$\mathbf{C B}=\left[\begin{array}{ll}2 & 5 \\ 1 & 6\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 7 & 2 \\ 9 & 0\end{array}\right]=$ undefined
EXAMPLE

$$
\begin{aligned}
& \mathbf{B C}=\left[\begin{array}{ll}
4 & 3 \\
7 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 5 \\
1 & 6
\end{array}\right]=\left[\begin{array}{ll}
11 & 38 \\
16 & 47
\end{array}\right] \\
& \mathbf{C B}=\left[\begin{array}{ll}
2 & 5 \\
1 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
7 & 2
\end{array}\right]=\left[\begin{array}{ll}
43 & 16 \\
46 & 15
\end{array}\right] \neq \mathbf{B C}
\end{aligned}
$$

## Properties of matrix multiplication

$\mathbf{A B}$ is not necessarily equal to $\mathbf{B A}$
$\mathbf{A B}=\mathbf{0}$ does not necessarily imply
that $\mathbf{A}=\mathbf{0}, \mathbf{B}=\mathbf{0}$, or $\mathbf{B A}=\mathbf{0}$
$\mathbf{A C}=\mathbf{A D}$ does not necessarily imply that $\mathbf{C}=\mathbf{D}$
$\mathbf{A I}=\mathbf{A}=\mathbf{I A}$
$(k \mathbf{A}) \mathbf{B}=k(\mathbf{A B})=\mathbf{A}(k \mathbf{B})=k \mathbf{A B}$
$\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}=\mathbf{A B C}$
$(\mathbf{A}+\mathrm{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C} ; \quad \mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}$
$(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
$(\mathbf{A B} \cdots \mathbf{P Q})^{\top}=\mathbf{Q}^{\top} \mathbf{P}^{\top} \cdots \mathbf{B}^{\top} \mathbf{A}^{\top}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
8 & 6
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
1 & 3
\end{array}\right]}
\end{aligned}
$$

## EXAMPLE

$$
\mathbf{A}=\left[\begin{array}{ll}
4 & 9 \\
0 & 2 \\
1 & 6
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}
3 & 7 \\
2 & 8
\end{array}\right]
$$

$$
(\mathbf{A B})^{\top}=\left(\left[\begin{array}{ll}
4 & 9 \\
0 & 2 \\
1 & 6
\end{array}\right]\left[\begin{array}{ll}
3 & 7 \\
2 & 8
\end{array}\right]\right)^{\top}=\left[\begin{array}{cc}
30 & 100 \\
4 & 16 \\
15 & 55
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
30 & 4 & 15 \\
100 & 16 & 55
\end{array}\right]
$$

$$
\mathbf{B}^{\top} \mathbf{A}^{\top}=\left[\begin{array}{ll}
3 & 7 \\
2 & 8
\end{array}\right]^{\top}\left[\begin{array}{ll}
4 & 9 \\
0 & 2 \\
1 & 6
\end{array}\right]^{\top}=\left[\begin{array}{ll}
3 & 2 \\
7 & 8
\end{array}\right]\left[\begin{array}{lll}
4 & 0 & 1 \\
9 & 2 & 6
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
30 & 4 & 15 \\
100 & 16 & 55
\end{array}\right]
$$

Thus, $\mathbf{B}^{\top} \mathbf{A}^{\top}=(\mathbf{A B})^{\top}$
$(\mathbf{A B} \cdots \mathbf{P Q})^{\top}=\mathbf{Q}^{\top} \mathbf{P}^{\top} \cdots \mathbf{B}^{\top} \mathbf{A}^{\top}$

Remarks: If the order of the factors in a product of matrices is changed, the product matrix may change (or may not exist at all!!. Ignoring this is the source of many errors.

For example when multiplying a matrix equation $\mathbf{B}=\mathbf{C}$ by another matrix $\mathbf{A}$, care must be taken to multiply $\mathbf{B}$ and $\mathbf{C}$ on the same side by $\mathbf{A}$.

Pre-multiplication $\mathbf{A B}=\mathbf{A C}$
Post-multiplication $\mathbf{B A}=\mathbf{C A}$


## Example

If $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$ are matrices such that $\mathbf{A B}=\mathbf{I}$ and $\mathbf{C A}=\mathbf{I}$, show that $\mathbf{B}=\mathbf{C}$.

## Solution:

