Soil's Compressibility

DR. IR. NURLY GOFAR, MSCE

Settlement

If a structure is placed on soil surface, then the soil will undergo an *elastic* and *plastic* deformation.

In engineering practice, the deformation or reduction in the soil volume is seen as **settlement** or heave depending on weather the load is increased or decreased.

Components of Total Settlement

$$S = S_i + S_c + S_s$$

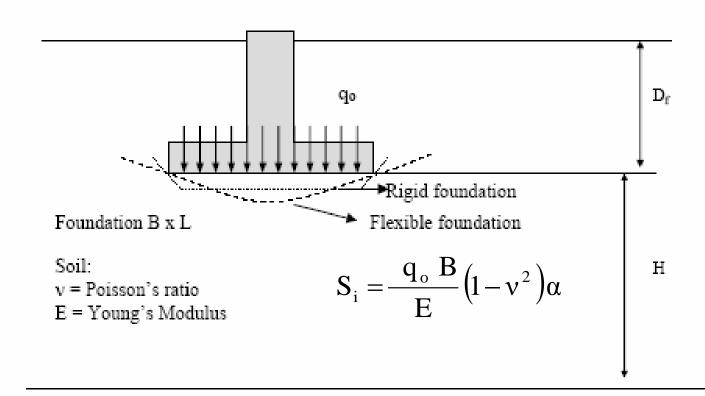
 $S_i = Immediate Settlement$

 $S_c = Consolidation Settlement$

 $S_s = Secondary compression$

Immediate Settlement

Immediate settlement is time – independent and results from shear strain that occur at constant volume as the load is applied to the soil.


It is due to elastic Deformation of soil grain → small and negligible

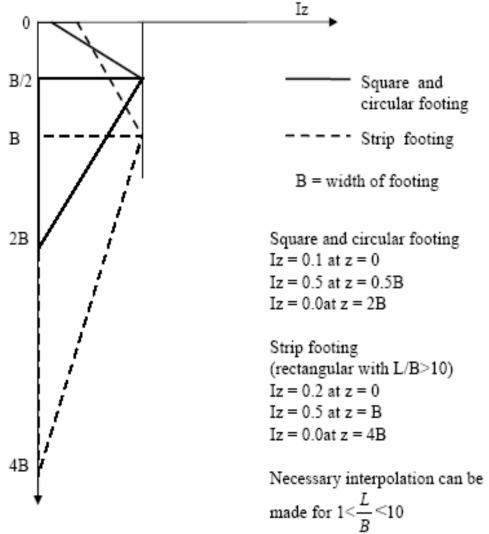
Soil grains are not elastic \rightarrow but generally calculated using elastic theory for cohesive soils

involves some assumptions such as homogeneity and isotropic which are not actually representative of natural soil properties.

Immediate/Elastic Settlement

General

Immediate/Elastic Settlement


Schmertmann method

Base of footing

$$S_{i} = C_{1}C_{2} (q_{o} - q) \sum_{0}^{2B} \frac{I_{z}}{E_{s}} \Delta z$$

$$C_1 = 1 - 0.5 \left(\frac{q}{q_o - q} \right)$$

 $C_2 = 1 + 0.2 \log (time in years/0.1)$

Influence factors for vertical displacement under footing on soil layer of infinite depth

Table 4.1 Influence factors for vertical displacement under footing on soil layer of infinite depth

Shape of footing	α				
base	Center	Edge/sides	Corner	Average	
Flexible foundations:					
Circle	1.00	0.64	_	0.85	
Square	1.12	0.76	0.56	0.95	
Rectangular $L/B = 2$	1.53	1.12	0.76	1.30	
Rectangular $L/B = 5$	2.10	1.68	1.05	1.82	
Rectangular $L/B = 10$	2.56	2.10	1.28	2.24	
Rigid foundations:					
Circle	0.79	0.79	-	0.79	
Square	0.82	0.82	0.82	0.82	
Rectangular $L/B = 2$	1.12	1.12	1.12	1.12	
Rectangular $L/B = 5$	1.60	1.60	1.60	1.60	
Rectangular $L/B = 10$	2.00	2.00	2.00	2.00	

Influence factors for vertical displacement under footing on soil layer of limited depth

Table 4.2 Influence factors for vertical displacement under footing on soil layer of limited depth

Shape of footing base	CX.				
	H/B =1	H/B = 2	H/B = 5	H/B = 10	$H/B = \infty$
Flexible foundations:					
Square $L/B = 1$	0.15	0.29	0.44	0.48	0.56
Rectangular $L/B = 2$	0.12	0.29	0.52	0.64	0.76
Rectangular $L/B = 5$	0.10	0.27	0.55	0.76	1.05
Rectangular $L/B = 10$	0.04	0.26	0.54	0.77	1.28
Rectangular $L/B = \infty$	0.04	0.26	0.52	0.73	-
Rigid foundations:					
Circle	0.35	0.54	0.69	0.74	0.79

Modulus of soil

Problem related to the calculation of elastic settlement is to get the accurate estimation of modulus i.e.

- Undrained modulus (E_u)
- Drained / Deformation Modulus (E_d)

Undrained Modulus

Stress strain curve from Triaxial Test (not accurate)

Plate Load Test (Quick loading) (better)

Pressuremeter Test $(E_p \neq E_u \neq E_d)$ (be careful)

Dilatometer Test (suggested)

USE CORRELATIONS

Drained Modulus

Oedometer Test

$$E_d = \frac{1}{m_v} = \frac{(1 + e_o)}{\alpha_v} = \frac{(1 + e_o)\sigma_{av}}{0.435C_c}$$

- Plate Load Test (Slow Loading) (better)
- Correlations

Correlation for Modulus

Based on results of in-situ testing (Correlation)

For the results of CPT, Schmertman (1978) suggested to use $E_s = 2.5 \ q_c$ for square or circular foundation, and $E_s = 3.5 \ q_c$ for strip footing,

For the results of standard penetration test, an empirical correlation $E_s = 766 N (kN/m^2)$ was suggested

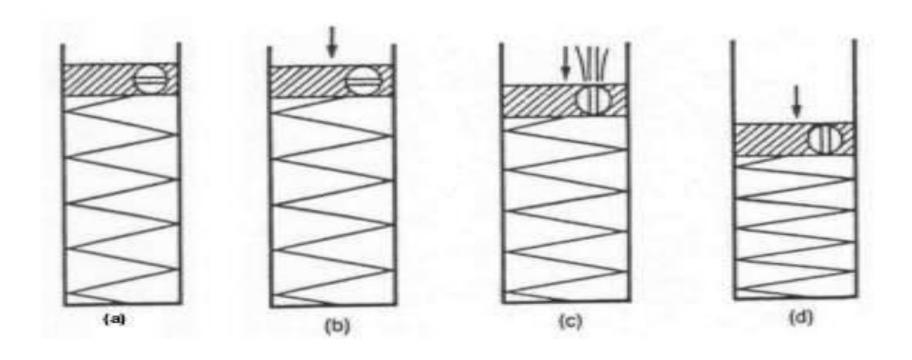
For the results of field vane shear test data (c_u) :

$$E_u = 500 - 1500 c_u$$

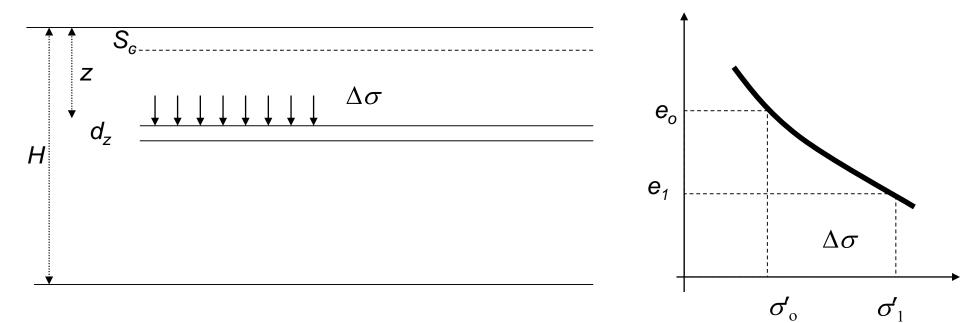
Values of Modulus & Poisson's ratio

Based on the type of soil encountered

Table 4.3 Values of Modulus and Poisson's ratio

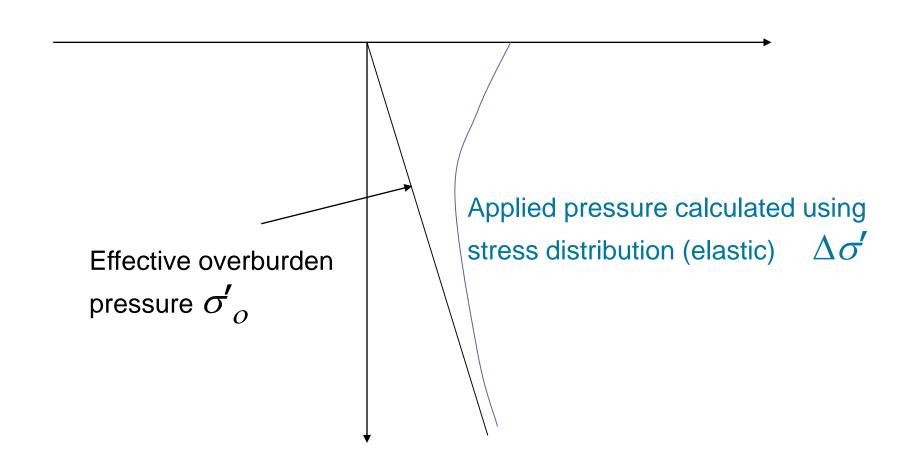

Soil Type	Cohesion (kPa)	Young's modulus E (MPa)	Poisson's ratio ν
Soft clay	< 25	2.5 - 15	0.40 - 0.50
Medium to stiff clay	25 - 100	15 – 50	0.45 - 0.50
Very Stiff to hard clay	> 100 kPa	50 – 100	0.45 - 0.50
Sandy Clay		25 – 250	
Silty Sand		5 – 20	
Loose sand		10 – 25	0.20 - 0.40
Dense sand		50 - 81	
Silt		2 - 20	

Consolidation Settlement


- ➤ Non-linear & irreversible
- ➤ Time dependent → Rate of settlement
- ➤ It is due to the squeezing out of water from the voids (dissipation of pore water pressure / water is incompressible)

Consolidation Settlement

When saturated soil is loaded → Load is taken by the water → water dissipate → Load is taken by the soil skeleton → Deformation



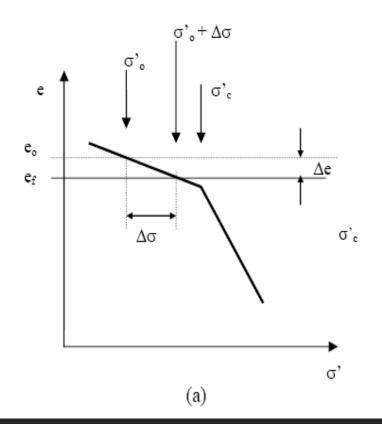
Consolidation Settlement: One-dimension

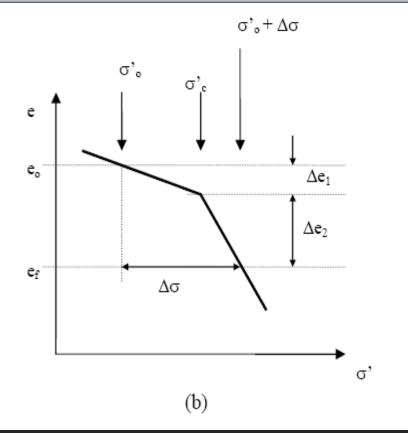
Consider a layer of saturated clay of thickness H, due to construction, the total vertical stress in an elemental layer of thickness d_z at depth z is increased by $\Delta\sigma$

Initial stress & stress increment

Settlement of Normally Consolidated Soil

$$S_c = C_c \frac{H}{1 + e_o} \log \frac{\sigma'_o + \Delta \sigma}{\sigma'_o}$$

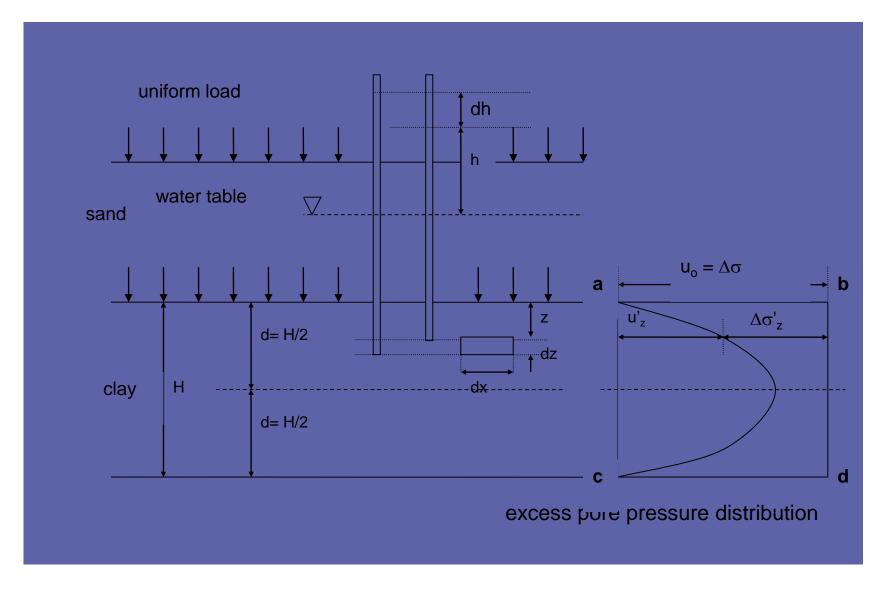

If we use m_{ν} , then


$$S_c = m_V \Delta \sigma' H$$
 or $S_c = a_V/(1 + e_o) \Delta \sigma' H$

Settlement of Over-consolidated Soil

$$S_c = C_r \frac{H}{1 + e_o} \log \frac{\sigma'_o + \Delta \sigma}{\sigma'_o}$$

$$S_c = C_r \frac{H}{1 + e_o} \log \frac{\sigma'_o + \Delta \sigma}{\sigma'_o} \qquad S_c = C_r \frac{H}{1 + e_o} \log \frac{\sigma'_c}{\sigma'_o} + C_c \frac{H}{1 + e_{o1}} \log \frac{\sigma'_o + \Delta \sigma}{\sigma'_c}$$



Rate of Consolidation

Terzaghi 1-D consolidation theory; **Assumptions:**

- 1. Compression and flow are 1-dimensional
- 2. The compressible layer is homogenous and saturated
- 3. Soil particles and water is incompressible
- 4. Darcy's law is valid
- 5. Strain due to external load is small and within the range of elasticity
- 6. The coefficient m_v and k remain constant throughout the process
- 7. There is a unique relationship, independent of time, between void ratio and effective stress

Distribution of excess pore water pressure in a clay layer subjected to uniform load

Solution to the Governing Consolidation Equation

The solution which satisfies these boundary conditions is obtained using sine harmonic Fourier series

$$\Delta u(z,t) = \sum_{m=0}^{\infty} \frac{2\Delta \mu_o}{M} \sin M \left(1 - \frac{z}{H_d} \right) \exp\left(-M^2 T_v \right)$$

$$M = \frac{\pi}{2} (2m+1)$$

Where

and *m* is a positive integer

and
$$T_v$$
 is Time ${}^{\dagger}T = Cv \frac{t}{{H_d}^2}$

Degree of Consolidation (U)

Degree of consolidation is the amount of consolidation completed at a particular time and depth. The ratio is equal to 0 everywhere at the beginning of consolidation and becomes unity when the consolidation completed

$$U_z = 1 - \frac{\Delta u_z}{\Delta u_o} = 1 - \sum_{m=0}^{\infty} \frac{2}{M} \sin\left(\frac{Mz}{H_{dr}}\right) \exp\left(-M^2 T_v\right)$$

The relationship between *U*, *T* and *z* is represented by an isochrones

Degree of consolidation

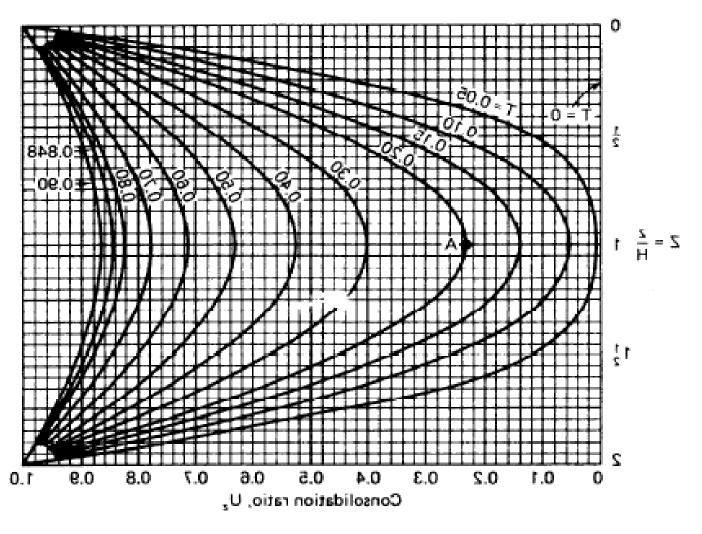


Fig. 9.3 Consolidation for any location and time factor in a doubly drained layer (after Taylor, 1948).

Degree of consolidation

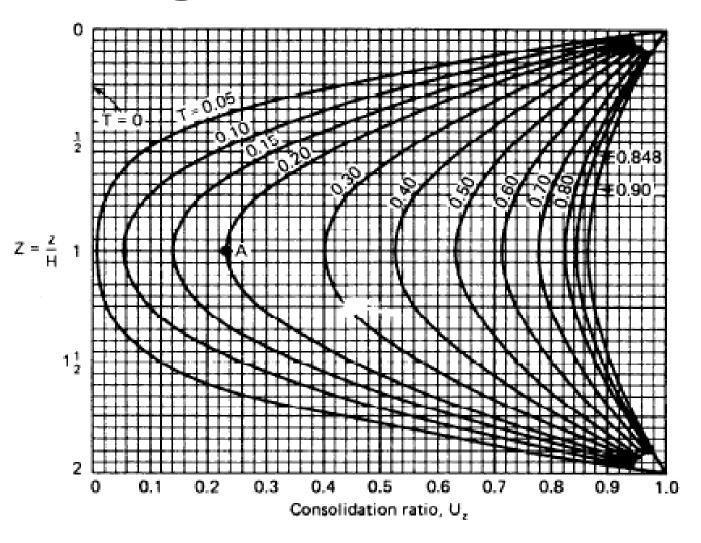


Fig. 9.3 Consolidation for any location and time factor in a doubly drained layer (after Taylor, 1948).

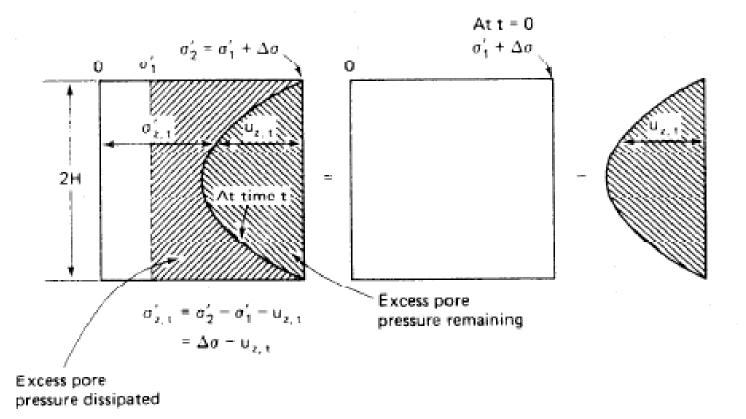
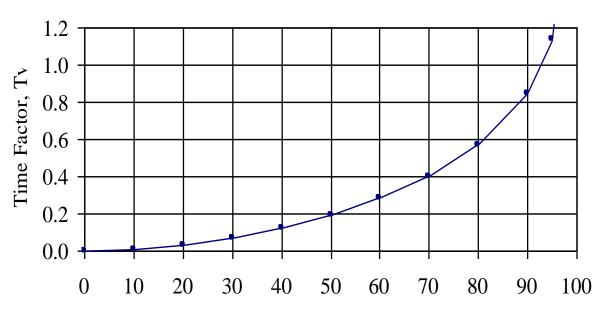


Fig. 9.4 Average degree of consolidation, U_{avg}, defined.


Average degree of consolidation

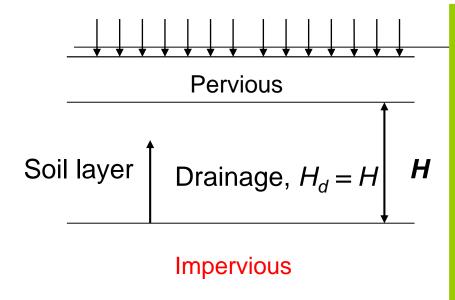
Geotechnical engineer is interested in the average degree of consolidation NOT the degree of consolidation at a particular depth,

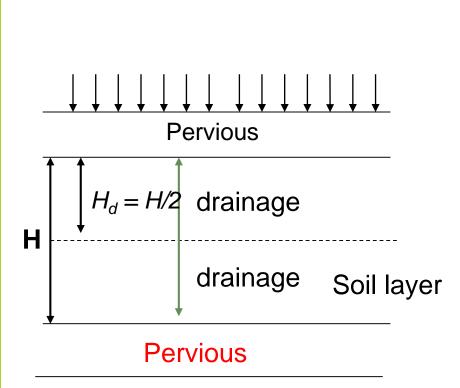
therefore

$$U = 1 - \frac{\Delta u_z}{\Delta u_o} = 1 - \sum_{m=0}^{\infty} \frac{2}{M^2} \exp(-M^2 T_v)$$

Relationship between T_{ν} and U

Percent consolidation (%)


Relationship between T_{ν} and U


Consolidation	U	T_{ν}
Percentage	average	Double drainage
10%	0.1	0.008
20%	0.2	0.031
30%	0.3	0.071
40%	0.4	0.126
50%	0.5	0.196
60%	0.6	0.287
70%	0.7	0.403
80%	0.8	0.567
90%	0.9	0.848
95%	0.95	1.136
100%	1.0	a

Cassagrande: $U < 60\% \rightarrow T_v = (\pi/4) U^2$

 $U > 60\% \rightarrow T_v = -0.933 \log (1-U) - 0.085$

Single drainage vs Double drainage

Secondary Compression (Creep)

Secondary compression is a form of soil creep that is largely controlled by the rate at which the skeleton of compressible soils (clay, silt, and peat) can yield and compress (**Time dependent**)

General perceptions

- Secondary compression occurs at a slower rate than primary consolidation
- Usually occur after the primary consolidation, but can also start during primary consolidation.
- **❖ Difficult to separate** secondary **compression** from the primary one especially for thick layer

Evaluation of Secondary Compression according to extension of Cassagrande Method (C_{α}/C_{c} concept)

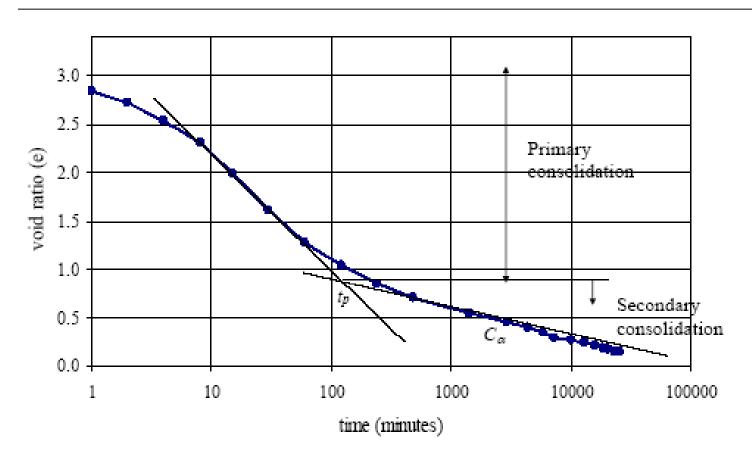


Figure 4.15 Void ratio vs time for primary and secondary settlement

Change of void ratio Δe from time t_p to t is given as:

$$\Delta e_s = C_\alpha \log \left(\frac{t}{t_s} \right)$$

The secondary compression axial strain ε_σ corresponding to Δe is

$$\varepsilon_s = C_{\alpha\varepsilon} \log \left(\frac{t}{t_s} \right)$$

In these cases, C_{α} is the secondary compression index which is analogous to the C_c while $C_{\alpha\varepsilon}$ is the modified secondary compression index, thus:

$$C_{\alpha e} = \frac{C_{\alpha}}{1 + e_{op}}$$

The secondary compression settlement is

$$s_s = H_o \frac{C_\alpha}{1 + e_{op}} \log \left[\frac{t}{t_p} \right]$$

where:

 H_o : the thickness of layer at the end of primary consolidation

 t_p : the beginning of secondary consolidation

t: time of interest

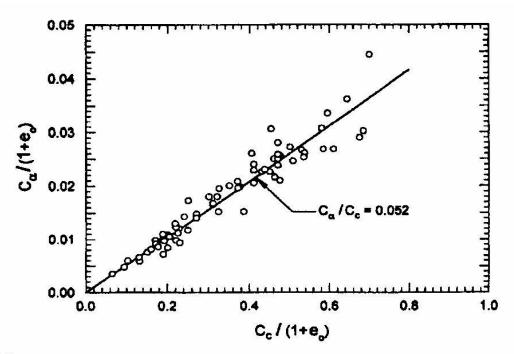


FIG. 10. Relationship between Secondary Compression Index and Compression Index for Middleton Peat

Research Findings:

- 1. C_{α} is not independent of time
- 2. C_{α} is not independent of the thickness of the soil layer
- 3. C_{α} is independent of LIR, as long as the primary consolidation occurs
- 4. The ratio C_{α}/C_{c} is approximately constant for many NC soils over the normal range of engineering stresses (Holtz and Kovacs, 1981).

TABLE 2—Degree of consolidation (%) at which the secondary compression begins.

Pressure Range (kPa)	Load	Beginning of the Secondary Compression (Degree of consolidation %)				
	Increment Ratio	Kaolinite	Red soil	Silty Soil	Peat	
25–75	2	98.5	99	97	86	
75–150	1	92.5	97	93	73	
150-225	0.5	70	69	75	64	
225-300	0.33	65	59	63	62	
300375	0.25	59	58	56	60	
375-450	0.20	56	57	54	59	

Thank you