

Review - Interpretasi Ekonomis dari Simbol Darma **Dalam Simplex**

Simbol	Interpretasi ekonmis
X_{j}	Tingkat Aktivitas ($j = 1, 2,, n$)
$C_{\rm j}$	Laba per satuan aktivitas j
Z	Laba total dari seluruh aktivitas
b _i	Jumlah sumber I yang tersedia (i = 1, 2,, m)
a_{ij}	Jumlah sumber I yang 'dipakai' oleh setiap satuan aktivitas j

Asumsi dasarnya adalah : masalah asli/simplex/primal-nya dalam bentuk standar.

- •Bentuk Standar masalah asli/simplex/primal adalah :
- •Fungsi Tujuannya:

•Maksimumkan
$$Z = \sum_{j=1}^{N} C_j X_j$$

•Batasan-batasan : \sum aij $Xj \le bi$, untuk i = 1, 2, m j=1

dan
$$Xj \ge 0$$
; untuk j = 1, 2,n

Dasar Teori Dualitas

Tabel Simplex

Variabel Dasar	Z	X_1	X_2 X_n	X_{n+1}	X	n + m	NK
Z	1	(Z1-C1) (Z2-C2) (Zn-Cn)	Y1		Ym	Y0

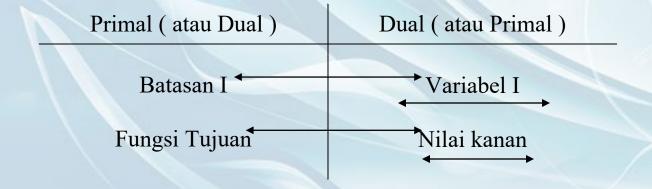
Kondisi Optimal tercapai apabila :

$$Z_j - C_j \ge 0$$
, untuk $j = 1, 2, n$.
Yi ≥ 0 , untuk $i = 1, 2,m$

Bentuk Dual-nya adalah :

m

• Maksimumkan Yo = $\sum b_i Y_i$ i = 1 m


• Batasan-batasan : $\sum a_{ij} Y_i \ge C_j$, untuk j = 1, 2, n i =1

dan $Y_i \ge 0$; untuk i = 1, 2,m

Hubungan Simplex/Primal - Dual

(1) Parameter batasan-batasan primal (atau dual) merupakan koefisien variabel dual (atau primal); (2) koefisien fungsi tujuan primal (atau dual) merupakan nilai kanan dua (atau primalnya).

Tabel Primal-Dual Linier Programing

		PRIMAL		DUAL	
	1.	Fungsi Tujuan : Maksimasi <u>Minimasi</u>	→	<u>Fungsi Tujuan : Minimasi</u> <u>Maksimasi</u>	Thomas .
	1.	Konstanta Ruas kanan	→	Koefisien Fungsi Tujuan	
	1.	Koefisien Fungsi Tujuan	→	Konstanta Ruas kanan	
	1. 2. 3.	Pembatas Fungsi Tujuan Maksimasi	→ → → → → →	Non Negative Constraint Non negative constraint $y_i \le 0$ Non negative constraint $y_i \ge 0$ Non negative constraint tidak terbatas dalam tanda Non negative constraint $y_i \ge 0$ Non negative constraint $y_i \le 0$ Non negative constraint tidak terbatas dalam tanda	ų.
	 1. 2. 3.	 Non negative constraint Fungsi Tujuan Maksimasi Non negative constraint x_i ≥ 0 Non negative constraint Tidak terbatas dalam tanda Fungsi Tujuan Minimasi 	→ → → → → → →	Pembatas Pembatas ≥ Pembatas ≤ Pembatas = Pembatas ≤ Pembatas ≤ Pembatas ≥ Pembatas =	
1	·	 Non negative constraint x_i ≥ 0 Non negative constraint x_i ≤ 0 Non negative constraint Tidak terbatas dalam tanda 	-		

Contoh Soal

- Perusahaan sepatu 'IDEAL' membuat 2 macam sepatu. Yang pertama adalah sepatu dengan sol karet (X_1) , dan yang kedua adalah sepatu dengan sol dari kulit (x_2) . Untuk memproduksi kedua macam sepatu tersebut perusahaan menggunakan 3 jenis mesin. Mesin 1 =Khusus untuk membuat sepatu dari karet, dng kapasitas max. = 8 jam. Mesin 2 =Khusus untuk membuat sepatu dari kulit, dng kapasitas max. = 15 jam. Mesin 3 =Khusus untuk asemblim kedua macam sepatu tsb., dng kapasitas max. = 30 jam
- Setiap lusin X₁ mula-mula dikerjakan di mesin 1 selam 2 jam, dan selanjutnya menuju mesin 3 selama 6 jam. Sedangkan x₂ dikerjakan oleh mesin 2 selama 3 jam dan langsung ke mesin 3 selama 5 jam.
- Sumbangan terhadap laba untuk setiap sepatu $X_1 = Rp 30.000,-$, sedangkan sepatu $X_2 = Rp 50.000,-$
- Untuk mendapatkan hasil yang optimal, berapakah Sepatu X_1 dan x_2 yang harus diproduksi ?

Tabel Primal-Dual Untuk Contoh di Atas

		The state of the s	COLAMO A
	V	V	
Value	Λ_1	Λ_2	- 93
Y_1	2	0	≤ 8
Y_2	0	3	≤ 15 ≤ 30
Y_3	6	5	≤ 30
	≥ 3	≥ 5	

Penyajian dalam persamaan Primal - Dual

Maksimumkan : $Z = 3X_1 + 5X_2$ Minimumkan : $Y_0 = 8Y_1 + 15Y_2 + 30Y_3$

Batasan-batasan:

$$2X_1 \leq 8$$

$$6X_1 + 5X_2 \le 30$$

dan
$$X_1, X_2 \ge 0$$

$$2Y_1 + 6Y_3 \ge 3$$

 $3Y_2 + 5Y_3 \ge 5$

$$\boldsymbol{Y}_1,\,\boldsymbol{Y}_2,\,\boldsymbol{Y}_3\geq\boldsymbol{0}$$

Tabel Optimal Simplex-nya:

Variabel Dasar	Z	X_1	X_2	X_3	X_4	X_5	NK
Z	1	0	0	0	5/6	1/2	27 ½
X3	0	0	0	1	5/9	-1/3	6 1/3
X2	0	0	1	0	1/3	0	5
X_1	0	1	0	0	-5/18	1/6	5/6

Solusi Optimalnya - Simplexnya:

$$X1 = 5/6$$

$$X2 = 5$$

Laba =
$$27 \frac{1}{2}$$

Dengan cara sama, solusi optimal masalah Dual-nya adalah :

$$Y1 = 0$$

$$Y2 = 5/6$$

$$Y3 = \frac{1}{2}$$

Penjelasan:

- Perhatikan! Ketiga nilai tersebut sama dengan koefisien slack variabel pada baris pertama (Z)
- Nilai ini juga menunjukkan kontribusi per satuan sumber I (produk) terhadap laba

Contoh: untuk Y3 = ½ → kendala 3

Bila kapasitas mesin 3 (batasan ke-3) dapat dinaikkan dari $6X1 + 5X2 \le 30$ menjadi $6X1 + 5X2 \le 31$, maka X1, X2, dan laba akan berubah menjadi :

$$6X_1 + 5X_2 = 31 \rightarrow x 3$$
$$3X_2 = 15 \rightarrow x 5$$

$$18X_1 + 15X_2 = 93$$
 $15X_2 = 75$

 $18X_1 = 18$

$$X_1 = 1$$

 $X_2 = 5$

• Sehingga nilai Z-nya adalah : $Z^* = 3(1) + 5(5) = 28$, naik ½ dibanding sebelumnya.

Tetapi kenaikan ada batasnya (dalam contoh, max. 19), Bagaimana kalau naik 50 ?

$$6X1+ 5X2 = 50 \rightarrow x 3$$
$$3X2 = 15 \rightarrow x 5$$

 $X1 = 4 \frac{1}{6} \rightarrow ini sudah melanggar batasan ke-1, dimana : <math>2X1 \le 8$, sehingga $X1 \le 4$

Begitu pula dengan kenaikan-kenaikan kapasitas pada batasan lainnya.

ANALISIS SENSITIVITAS

Manfaat utama: menghindari perhitungan ulang yang dapat terjadi bila ternyata terjadi perubahan-perubahan pada masalah awal, seperti perubahan:

- Perubahan pada nilai kanan fungsi batasan
- Perubahan pada koefisien fungsi tujuan
- Penambahan variabel baru
- Penambahan batasan baru
- Perubahan pada koefisien yang menunjukkan berapa bagian kapasitas sumber yang di-'konsumsi' oleh satu satuan kegiatan
- Perubahan-perubahan tsb. Akan mengakibatkan salah satu dibawah ini :
- Penyelesaian optimal tidak berubah
- Variabel-variabel dasar mengalami perubahan, tapi nilainya tidak berubah

Kaidah Primal-Dual

Kaidah 1:

Pada setiap iterasi dalam simplex (baik primal maupun dual), matriks yang berisi variabel-variabel 'starting point' (tidak termasuk baris tujuan) dapat dipakai untuk menghitung koefisien-koefisien baris tujuan yang berhubungan dengan matriks tersebut.

Variabel Dasar	Z	X_1	X_2	X_3	X_4	X_5	NK
Z	1	0	0	0	5/6	1/2	27 ½
X3	0	0	0	1	5/9	-1/3	6 1/3
X_2	0	0	1	0	1/3	0	5
X_1	0	1	0	0	-5/18	1/6	5/6

$$(0,5,3) \begin{vmatrix} 1 & 5/9 & -1/3 \\ 0 & 1/3 & 0 \\ 0 & -5/18 & 1/6 \end{vmatrix} = (0,5/6,\frac{1}{2})$$

Koefisien fs. Tujuan

Perhatikan baris 1 pada tabel optimal

Kaidah 2:

Pada setiap iterasi dalam simplex (baik primal maupun dual), nilai kanan (kecuali untuk baris tujuan) dapat dihitung dengan mengalikan matriks yang dimaksud dalam kaidah 1, dengan vektor kolom yang berisi nilai kanan dari fungsi-fungsi batasan mula-mula.

$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	5/9 1/3 -5/18	-1/3 0 1/6	8 15 30	П	6 1/3 5 5/6

Perubahan Pada Fungsi Tujuan

Misalkan kontribusi laba per satuan produk menjadi X1 = Rp 40.000,dan X2 = Rp 60.000,-, maka output optimal yang baru adalah :

$$= (0, 8/9, 2/3)$$

Perubahan Koefisien-koefisien Teknis Fs. Tujuan. Misalnya dengan contoh Dual:

Minmumkan :
$$Z = 60.000Y1 + 75.000Y2 + 45.000Y3$$

Batasan-batasan:

$$4Y1 + 4Y2 + 2Y3 \ge 30$$

$$5Y1 + 6Y2 + 5Y3 \ge 40$$

$$6Y1 + 8Y2 + 5y3 \ge 60$$

$$Y1, Y2, Y3 \ge 0$$

Misalkan terjadi perubahan koefisien teknis pada X2 (Batasan 2 di Dual-nya), dari :

Fungsi batasan 2 - Dualnya menjadi :

3Y1 + 4Y2 + 6Y3 ≥ 40, dan nilai X2 pada baris X4, X1, dan X3 pada tabel optimal simpleksnya akan menjadi :

5 6 menjadi 3 4 maka: 6	1 0 0	-3/2 5/4 -1/2	6/5 -2 1		3 4 6	=	4 1/5 -17 4	
-------------------------	-------	---------------------	----------------	--	-------	---	-------------------	--