NETWORK ACCESS

Edi Surya Negara, M.Kom. Postgraduate Program, Informatics Engineering (S2) December 3, 2016

References :

- Computer Networks A Tanenbaum 5th edition (2011)
- Data Communications and Networking Behrouz A.Forouzan -4th edition (2007)
- Cisco System Inc 2011 Cisco Configuration Profesional User Guide.

After completing this chapter, students will be able to:

- Identify device connectivity options.
- Describe the purpose and functions of the physical layer in the network.
- Describe basic principles of the physical layer standards.
- Select the appropriate media for a given requirement and connect devices.
- Describe the purpose and function of the data link layer in preparing communication for transmission on specific media.
- Describe the Layer 2 frame structure and identify generic fields.
- Describe the characteristics and functions of the data link frame.

Chapter 3:

- 3.1 Physical Layer Protocols
- 3.2 Network Media
- 3.3 Data Link Layer Protocols
- 3.4 Media Access Control

3.1 Physical Layer Protocols

Physical Layer

Standards for the Physical layer specify signal, connector, and cabling requirements.

Outline of Physical Layer

- It defines the electrical, timing and their interfaces by which bits are sent as signals over the channel.
- Foundation on which the network is built.
- The properties of different kinds of physical channel determine the performance throughput, latency, and error rate.

Outline of Physical Layer

- Digital Modulation: How analog signals are converted into digital bits and back again.
- Multiplexing Schemes: Exploring how multiple conversations can be put on the same transmission medium at the same time without interfering with one another.

- Fourier analysis.
- Bandwidth-limited signals.
- Maximum data rate of a channel

Fourier Analysis

- We model the behavior of variation of voltage or current with mathematical functions.
- Fourier series is used to expand any periodic function with period T

$$g(t) = 1/2c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

- f = 1/T fundamental frequency.
- an, bn are the sine and cosine amplitudes of the nth harmonic.
- c is a constant

Bandwidth-Limited Signals (1)

A binary signal and its root-mean-square Fourier amplitudes.

The Maximum Data Rate of a Channel

Nyquists theorem

maximum data rate = $2B \log_2 bits/sec$

• Shannons formula for capacity of a noisy channel

maximum number of bits/sec = $B \log_2(1 + S/N)$

• S/N is called Signal to Noise Ratio (SNR)

Types of Physical Media

Types of Physical Media

Physical Layer Standards

Standard Organization	Networking Standards
ISO	 ISO 8877: Officially adopted the RJ connectors (e.g., RJ-11, RJ-45) ISO 11801: Network cabling standard similar to EIA/TIA 568.
EIA/TIA	 TIA-568-C: Telecommunications cabling standards, used by nearly all voice, video and data networks. TIA-569-B: Commercial Building Standards for Telecommunications Pathways and Spaces TIA-598-C: Fiber optic color coding TIA-594-2: Telecommunications Infrastructure Standard for Data Centers
ANSI	568-C: RJ-45 pinouts. Co-developed with EIA/TIA
ITU-T	• G.992: ADSL
IEEE	 802.3: Ethemet 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth

3.2 Network Media

UTP Cable

Properties of UTP Cabling

UTP cable does not use shielding to counter the effects of EMI and RFI. Instead, cable designers have discovered that they can limit the negative effect of crosstalk by:

- Cancellation
- Varying the number of twists per wire pair

Pair 3

T568B

Types of UTP Cable

Cable Type	Standard	Application
Ethernet Straight- through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	 Connects two network hosts Connects two network intermediary devices (switch to switch, or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter.

STP Cable

Coaxial Cable

Cable Manajement

Properties of Fiber Optic Cabling

Fiber-optic cabling is now being used in four types of industry:

- Enterprise Networks
- Fiber-to-the-home (FTTH) and Access Networks
- Long-Haul Networks
- Submarine Networks

Types of Fiber Media

- Small core
- Less dispersion
- · Suited for long distance applications
- · Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

Fiber versus Copper

Implementation Issues	Copper Media	Fibre Optic
Bandwidth Supported	10 Mbps – 10 Gbps	10 Mbps - 100 Gbps
Distance	Relatively short (1 – 100 meters)	Relatively High (1 – 100,000 meters)
Immunity To EMI And RFI	Low	High (Completely immune)
Immunity To Electrical Hazards	Low	High (Completely immune)
Media And Connector Costs	Lowest	Highest
Installation Skills Required	Lowest	Highest
Safety Precautions	Lowest	Highest

Types of Wireless Media

Wi Fi	IEEE 802.11 standards Commonly referred to as Wi-Fi. Uses CSMA/CA Variations include: 802.11a: 54 Mbps, 5 GHz 802.11g: 54 Mbps, 2.4 GHz 802.11g: 54 Mbps, 2.4 GHz 802.11g: 600 Mbps, 2.4 and 5 GHz 802.11a: 1 Gbps, 5 GHz 802.11ac: 1 Gbps, 5 GHz 802.11ac: 7 Gbps, 2.4 GHz, 5 GHz, and 60 GHz
🛞 Bluetooth°	IEEE 802.15 standard Supports speeds up to 3 Mb/s Provides device pairing over distances from 1 to 100 meters.
WMAX	IEEE 802.16 standard Provides speeds up to 1 Gbps Uses a point-to-multipoint topology to provide wireless broadband access.

Properties of Wireless Media

Wireless does have some areas of concern including:

- Coverage area
- Interference
- Security

Wireless Transmission

- The Electromagnetic Spectrum
- Radio Transmission
- Microwave Transmission
- Infrared Transmission
- Light Transmission

The Electromagnetic Spectrum

The electromagnetic spectrum and its uses for communication

VSATs using a hub

Physical Layer Fundamental Principles

Media	Physical Components	Frame Encoding Technique	Signalling Method
Copper Cable	UTP Coaxial Connectors NICs Ports Interfaces	Manchester Encoding Non-Return to Zero (NRZ) techniques 48/58 codes are used with Multi- Level TransitionLevel 3 (MLT-3) signaling 88/108 PANI6	Changes in the electromagnetic field Intensity of the electromagnetic field Phase of the electromagnetic wave
Fiber Optic Cable	Single-mode Fiber Multimode Fiber Connectors NICs Interfaces Lasers and LEDs Photoreceptors	 Pulses of light Wavelength multiplexing using different colors 	 A pulse equals 1. No pulse is 0.
Wireless Media	 Access Points NICs Radio Antennae 	 DSSS (direct-sequence spread- spectrum) OFDM (orthogonal frequency division multiplexing) 	Radio waves

3.3 Data Link Layer Protocols

The Data Link Layer

Data Link Sublayers

Network				
	LLC Sublayer			
Data Link	MAC Sublayer	2.3 ernet	2.11 FEI	15 tooth
Physical		80; Ethe	802 Wi	802 Blue

Media Access Control

Formatting Data for Transmission

Data Link Layer Standards

Standard organization	Networking Standards
IEEE	 802.2: Logical Link Control (LLC) 802.3: Ethemet 802.4: Token bus 802.5: Token passing 802.11: Wireless LAN (WLAN) & Mesh (Wi-Fi certification) 802.15: Bluetooth 802.16: WiMax
ITU-T	 G.992: ADSL G.8100 - G.8199: MPLS over Transport aspects Q.921: ISDN Q.922: Frame Relay
ISO	HDLC (High Level Data Link Control) ISO 9314: FDDI Media Access Control (MAC)
ANSI	X3T9.5 and X3T12: Fiber Distributed Data Interface (FDDI)

