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Abstract 
 
The role of logistics nowadays is expanding from just providing transportation and warehousing 
to offering total integrated logistics. To remain competitive in the global market environment, 
business enterprises need to improve their logistics operations performance. Improvements can 
be achieved through a comprehensive analysis and optimisation of the logistics networks 
performance. In this paper, a mixed integer linear programming model for optimizing logistics 
network performance is developed. We consider a single-product, multi-period, multi-facilities 
network, as well as the multi-product network. The problem is modeled in form of a network 
flow problem with the main objective being to minimize total logistics cost. The problem is 
solved using commercial linear programming package, CPLEX ver. 9.0. 
 
Keywords:  Integrated logistics network, Mixed integer programming, Network optimization 
 
 
1. Introduction 
 

Logistics deals with the planning and control of material flows as well as related information 
in organizations, and becomes a critical part of supply chain management. Its mission is to get the 
right materials to the right place at the right time [15]. Logistics also deals with mobility concepts 
relating to tangible as well as intangible assets.  

Logistics activities connect and activate the objects in the supply chain in the form of a 
logistics network. A logistics network typically consists of a set of suppliers, a set of 
manufacturing centres, a set of warehouses, a set of distribution centres, and a set of retail outlets 
as well as channels for the flow of raw materials, work-in-process inventory, and finished 
products between the facilities [22]. Tavasszy [24] stated that logistics deals also with the 
achievement of customer satisfaction at the minimum level of costs. It is a crucial problem in 
business nowadays due to the high proportion of logistics costs in the costs of goods sold, often 
ranges from 10 to 35 per cent [5]. Geunes [27] also stated that logistics cost represent a large 
portion of total supply chain cost, especially when the supply chain network is extended to global 
market. Reducing the total cost while keeping the quality of network performance is a challenge 
in real business nowadays. Many researchers advocate a quantitative approach to improve and 
optimize logistics network performance [4,5, 7, 11, 14, 17].  

The modern business paradigm has changed due to the global competitive market towards a 
network-based collaboration and integrated network. The integrated logistics network is the 
integration of several business functions (procurement, manufacturing, and distribution) that 
could be drawn as an abstract of nodes and arcs. It covers either micro (within facility) or macro 
levels (between facilities). This functions link the company with its customers and suppliers [5]. 
In industry practices, the integration display many benefits that include reduced costs, increased 
profit, increased market share, a strengthen competitive position, and the enhancement of the 
value of the company. 

To remain competitive in the market then role of logistics optimization becomes more 
crucial than before. Businesses need to improve their network performance and reducing the costs 
in integrated analysis rather than individual ones. In integrated analysis, company’s logistics 



functions are treated simultaneously rather than individual, and the network performance 
optimality will be achieved when each component is optimum as well as the global optimum, 
while the main objective is to satisfy the customers demand as well as maximize its profits. To 
achieve this, we must capture and integrate all logistics aspects in one integrated network model, 
than optimize a given performance measure and satisfy a given set of constraints [15]. Several 
papers [1, 8, 9, 10, 17, 22, 24, 28, 29] addressed this integrated network problem. 

In this paper, we study logistics network that consists of a set plants, a set of warehouses, and 
a set of customer points. Each of customers has a given demand in each period in the planning 
horizon. We study both single-product and multi-product model. The plants and warehouses have 
known and finite capacity in certain period. All costs (setup cost, unit production cost, inventory 
cost, warehouse cost, and transportation cost) are deterministic.  

This paper is organized as follows. Section 2 presents the literature review. Section 3 
presents the model formulation in form of a mixed integer linear programming (MILP) for the 
single-product problem as well as the multi-product problem. Computational results are discussed 
in Section 4.  
 
 
2. Literature Review 
 
Several reviews on integrated models have been published [8, 12, 30, 31]. Erenguc et.al [12] 
provided a taxonomical framework for analyzing integrated production-distribution network in 
supply chains. Karimi et.al [30] provide a review of models and algorithms for the capacitated 
single-level lot sizing problem including variants and solution approaches in form of exact and 
heuristics algorithm. Brahimi et.al [31] provides a review problem of the single item lot sizing 
problem. They survey various solution methods and four different mathematical programming 
formulations of the classical problem, as well as the extensions for real-world application. Cohen 
and Lee [8] provide review of a model framework and an analytical procedure for evaluating the 
performance of production-distribution system. They addressed a methodology that measures 
tradeoff of cost, service, and flexibility in a production-distribution system. The methodology 
considers relationship between production and distribution control policies that affect inventory 
control, plant production mix, and production scheduling.  

An integrated analysis is commonly used in logistics design network problems. Ambrosino 
and Scutella [1] addressed an integrated distribution network model that involves facility 
location, transportation, and inventory decision to minimize the associated cost by defining the 
number and the location of the facilities in the network. Two scenarios have been investigated, 
both of them do not include inventories, and two types customer are addressed: clients and big 
clients. Cordeau, et.al [9] formulated the deterministic logistics network in a single country and a 
single period that integrated location and capacity choices for plants and warehouses. In order to 
solve the logistics network design problem, two approaches are used, a simplex-based branch and 
bound and a Benders decomposition approach. Some valid constraints are also proposed to 
strengthen the LP relaxation of the problem. Introducing valid constraints in the master problem 
could dramatically reduce the number of cuts. Flipo and Finke [13] studied a multi-facility, 
multi-product and multi-period problem. They developed a network flow model with relatively 
few additional 0-1 variables to describe the linking constraints between periods. Park [22] 
presented the solution for integrated production and distribution planning and investigated the 
effectiveness of the integration through a computational study, in a multi-plant, multi-retailer, 
multi-item, and multi-period logistic environment where the objective is to maximize the total net 
profit. He developed mixed-integer models and a heuristics for solving the problem. The result of 
analysis shows that the heuristics perform well in term of both optimality approximation and 
computational time. It increases an average 4.1% in total net profit and 2.1% in demand fill rate. 
The analyses also show that the value of integrated planning was especially high in an 
environment of sufficiently large production capacity, high fixed cost, small vehicle capacity, and 
high unit stock out cost. 

 



Analysis on the integration of facility location models with logistical functionality has also 
been used in solving logistics network problem. Syam [24] addressed an integrated model of 
logistics network that minimizes the total physical distribution costs by simultaneously 
determining optimal plants and warehouse locations, flows in the resulting network, shipment 
compositions and shipment frequencies in the network using simulated annealing to determine 
the optimal sets of open plants and warehouses, and Lagrangian relaxation to solve the flow and 
consolidation problem in the resulting network. Pirkul and Jayaraman [33] have investigated 
capacitated and bi-echelon network problem, and both include multiple plants, warehouses, and 
destinations. Ravi and Sinha [34] provide variants of multicommodity facility location and 
approximation algorithms. 

Recently, several papers provide an analysis of the performance of integrated logistics 
network. Brahimi et.al [21] presented a capacitated multi-item lot-sizing problem which 
encounter time windows and capacity constraints as an extended model of [31]. The problem 
considered in their paper is the single-level single-resource multi-item capacitated lot-sizing 
problem with a finite planning horizon. Two mixed integer linear programming formulations are 
presented: the aggregate formulation and the facility location-based. They used lagrangian 
heuristics with two different experimental problems, noncustomer-specific problems and 
customer-specific problem. They found that the best heuristics are obtained when only capacity 
constraints are relaxed. Norden and Velde [32] studied multi-product lot-sizing problem with 
transportation capacity reservation contract. The problem is to determine transportation lot-sizes 
to meet warehouses demand with no backorder allowed and to minimize total cost, the sum of 
inventory carrying, ordering, and transportation costs. They proved that the problem is NP-hard. 
In this paper, they developed an integer linier programming formulation and a lagrangian 
algorithm for computing lower and upper bound on the optimal solution value. 

 
 
3. Model Formulation 
 

In order to improve logistics network performance, several optimization methods can be 
used, such as mathematical programming, genetic algorithms, simulated annealing, etc. This 
paper will use mathematical programming for the reason: it provides insight into problem, its 
characteristics and the linkages between the various interacting factors. Furthermore, there has 
been considerable progress in recent years with solving large-scale integer programming 
problems. 
 
 
3.1. The Basic Model 
 

We consider in this section a single product, multi period, multi facilities logistics network 
with the following features: 

• l plants P1, P2, …, Pl where the product can be produced, 
• m warehouses W1, W2, …, Wm where the product can be stored, 
• n customer locations C1, C2, …, Cn where the product is required, 
• Plant production capacities and warehouses storage capacities are known, 
• Customer requirement at each centre are deterministic and known for each period. 

Furthermore, they must be met, that is backorders are not permitted, 
• A planning horizon of T periods, 
• A homogeneous fleet of vehicle transport the product through the network 

Figure 3.1 depicts the situation. In this model, it is assumed that there are a number of plants 
that produce single product with a specific capacity over a period time. The set-up cost is a fixed 
cost on a lot-for lot basis, not dependent on the realized volume. It is incurred at each plant 
whenever the production runs. All products are assumed directly to be delivered to warehouse or 
retail outlet. Products are delivered using a homogeneous fleet vehicle. The movement of vehicle 
incurs a variable transportation cost only.  



The demand for an item in a period at warehouse is expressed as a forecasted real demand. It 
is assumed that the demands are given and backordering is not allowed. Each warehouse must 
keep a limited amount of inventory, with higher holding cost. 

The problem is to determine a production and distribution plan over the planning horizon that 
meets the customer demands, satisfies the capacity restrictions and minimizes the total logistics 
costs. The costs include: production, transportation, and inventory holding. 

We represent the problem in the form of a network (Fig.3.2). We define the network for the 
flow of products from their production points to customers through the warehouse as storage. 
This model then refers to three components: the production sites, indexed by i, the warehouse, 
indexed by j, and the customers, indexed by k. 

A mixed integer linear programming (MILP) model is then developed to solve the problem. 
The model comprises two cost components: (a) from Plants to Warehouses and (b) from 
Warehouses to Customers. 

 
Parameters 
Notation that we use in the model: 

iP   : capacity of plant i , i = 1,2, …, l 
jW  : capacity of warehouse j, j = 1,2, …, m 
t
kD  : demand of customer k in period t, k = 1,2, …, n; t = 1,2, …, T 

t
jI   : inventory level at warehouse j at the end of period t, j = 1,2, …, m; t = 1,2, …, T 

t
ics  : setup cost at plant i in period t, i = 1,2, …, l ; t = 1,2, …, T 
t
icx  : unit cost of production at plant i in period t, i = 1,2, …, l; t = 1,2, …, T 
t
ijct  : unit cost of transportation to delivered product from plant i to warehouse j in period 

t,   i = 1,2, …, l; j = 1,2, …, m; t = 1,2, …, T  
t
jkcu  : unit cost of transportation to delivered product from warehouse j to customer k in  

period t, j = 1,2, …, m; k= 1,2, …, n; t = 1,2, …, T 
t
jcf   : unit cost of space used at warehouse j in period t, j = 1,2, …, m; t = 1,2, …, T 
t
jcv   : variable cost at warehouse j in period t, j = 1,2, …, m; t = 1,2, …, T 
t
jsu   : amount space used at warehouse j in period t, j = 1,2, …, m; t = 1,2, …, T 

t
js    : amount space leased/available at warehouse j in period t, j = 1,2, …, m; t = 1,2, …, T 

M    :  a big M number 
 
Decision Variables 

t
iX  : amount of product produced at plant i in period t 
t
ijX    : amount of product transported from plant i to warehouse j in period t 

t
jkY    : amount of product transported from warehouse j to customer k in period t 
t
jI   : inventory level at warehouse j at the end of period t 

 
 

Fig 3.1. Multi-facilities network flow model 
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Fig 3.2. Network model representative 
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Objective Function 
The objective is to minimize the total cost of production, transportation, and inventory over 

the T periods. The model assumes no starting inventory. The model can be expressed as follows: 
 
Minimize 
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(3.1) 
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Model Constraints 
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The objective function (3.1) represents the total costs over the T periods. Constraint (3.2) 
assures that a setup cost will be incurred if there is product produced in plant i. It will guarantee 
that t

iz takes value one whenever t
iX  is positive. Number of product produced at plant i in period 

t and transferred from plant i to warehouses j in period t is restricted by the capacity constraints 
(3.3) and (3.4). Constraint (3.5) requires that warehouses must satisfy all demand. Product flow 
from plant i to warehouse j must respected the throughput capacity of warehouse j, as indicated in 
(3.6). Constraint (3.7) related to product flow requirement in warehouse j. Total product delivered 
out from warehouse cannot exceed total product delivered to warehouse. Balance constraints of 
inventory level in warehouse j and warehouse space used during period time t are provided by 
(3.8), (3.9), (3.10). Constraints (3.11) and (3.12) are non-negative value. Constraint (3.13) is 
zero-one variable. 
 
Multi periods issue 

Analysis of multi-period issue is mostly used to anticipate periods of high demand. 
Therefore, it is necessary to store reasonable amount of product in advance, which in our model, 
this stock will be in warehouses.  In this case, we need arcs between nodes representing a same 
stock during adjacent periods. The product flows on these arcs are products that stay in stock from 
one period to the next. As for that, there should be holding costs associated with these flows. 



Constraints (3.6) and (3.8) are used to control inventory flow in warehouses as well as its 
capacity. 
 
 
3.2.  Extended Model Problem 
 

In this section, we extend the problem formulation described in Section 3.1 by introducing 
the capacity of transportation facilities, and by allowing backorders. 

We now introduce the capacity of transport facilities. The transport capacity in this model is 
the limitation of the maximum quantity of product that can be carried out by the vehicle in period 
T. It is assumed that: 

• The limitation is due to physical constraints and availability of transport facilities, 
• The capacity of each transportation lines could be identical or different. 

Let t
ijT  represent the capacity of transportation line between plant i and warehouse j in period t, 

and t
jkU  represent the capacity of transportation line between warehouse j and customer k in 

period t. Then, 
 t
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The model then can be expressed as follows: 

Minimize (3.1) 
Subject to (3.2) – (3.16) 

 
Our rest extension is to allow backorders. In this case, it is assumed that when demand 

cannot be fully satisfied then the shortage is backlogged, and satisfied during the next period. 
Johnson [26] stated that to represent the possibility of satisfying demand in a period through 
production in a later period, we could use network flow model. If t

jIh  is the on hand inventory at 
the end of period t at warehouse j, and t

jIb  is backorder position at warehouse j in period t, then 
the net inventory level at warehouse j in period t is: 
 t

j
t
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t
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where  
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Notation that used in the model: 
t
jIb  : backorder level at warehouse j in period t 
t
jIh  : on hand inventory at warehouse j in the end of period t 
t
jcb  : backorder cost at warehouse j in period t 

Then, our new model can be expressed as follows: 
 
Minimize 
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    (3.19) 
Subject to:  (3.2) – (3.18)  
 



3.3. Multi-product Model  
 

In this section we extend our model to multi-products. Suppose there were q product 
identified as 1,2,…q, which can be produced in plants P over a period of time. The plant’s 
production capacities for each product in a period are known. All products are assumed delivered 
directly to warehouse or retail outlet. Products are delivered using a homogeneous fleet vehicle 
with specific capacity for each product. The demand for product type q at warehouse j in a period 
t is expressed as a forecasted real demand. It is assumed that the demands are given and 
backordering is not allowed. Each warehouse could keep a limited amount of inventory for each 
product, with specific holding cost. 

We formulate the problem as a multi product network flow problem with fixed charge cost 
function. The problem is to determine a production and distribution plan over the planning 
horizon that meets the customer demands, satisfies the capacity restrictions and minimizes the 
total logistics costs. The costs include: production, transportation, and inventory holding. It is 
assumed those initial inventories are zero for all items. 

A mixed integer linear programming (MILP) model is then developed to solve the problem. 
The model assumes no starting inventory and not allowing backorders. The model can be 
expressed as follows: 
 
Minimize 
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The objective function (3.20) represents the total costs over the T periods. Constraint (3.21) 

assures that a setup cost will be incurred if there is product type q produced in plant i. Number of 
product produced at plant i in period t and transferred from plant i to warehouses j in period t is 
restricted by the capacity constraints (3.22) and (3.23). Product transferred from plant i to 
warehouse j and from warehouse j to customer k are restricted by the transportation capacity 
constraints (3.24 and 3.25). Constraint (3.26) and (3.27) requires that warehouses must satisfy all 
demand. Product flow from plant i to warehouse j must respected the throughput capacity of 
warehouse j, as indicated in (3.28). Constraint (3.29) related to product flow requirement in 
warehouse j. Total product delivered out from warehouse cannot exceed total product delivered to 
warehouse. Balance constraints of inventory level in warehouse j and warehouse space used 
during period time t are provided by (3.30), (3.31), and (3.32). Constraint (3.33) and (3.34) is the 
non-negative value. Constraint (3.35) is zero-one variable. 
 
 
4. Computational Results 
 

In this section, we describe the computational experience in solving the single product and 
multi product models. We generate several test data to demonstrate the applicability of the 
mathematical formulations above. The following sample data are used: 

• There are 7 nodes which represent 2 Plants (Plant1 and Plant2), 3 Warehouses 
(Warehouse1, Warehouse2, and Warehouse3), and 2 Customers (Customer1 and 
Customer2), 

• T period observation is 9 period, 
• Plants production capacity are in the range 2000 – 6000 unit/period, 
• Inventory storage capacity in warehouses are in the range 2000 – 5000 unit/period, 
• Demand model are as shown in Table 4.1, 
• Setup cost model and production cost model in production facilities are as shown in Table 

4.2, 
• Cost incurred in warehouses are shown in Table 4.3, 
• Transportation cost between plants, warehouses, and customers are indicated in Table 

4.4. 
 
Table 4.1. Customer demand (in Unit)  

Demand Model 1 Demand Model 2 Period Customer 1 Customer 2 Customer 1 Customer 2 
1 1800 0 1800 2000 
2 2000 500 2000 2500 
3 1500 1000 1500 2000 
4 2700 2000 2700 2000 
5 2000 1800 2000 2800 
6 800 1600 1800 2600 
7 1300 1900 1300 2900 
8 2300 1500 2300 2500 
9 2500 2100 2500 2100 

 
 
 



Table 4.2. Plants Cost data (in $)  
Cost Model 1 Cost Model 1 

Plant1 Plant1 Plant2 Plant2 Period 
(a)  (a)  (b) (a) (b) (b) (a) (b) 

1 8000 50 6000 40 180000 50 160000 40 
2 8000 50 6000 40 180000 50 160000 40 
3 8000 50 6000 40 180000 50 160000 40 
4 8500 55 6000 40 185000 55 160000 40 
5 8500 55 7500 40 185000 55 175000 40 
6 8500 55 7500 40 185000 55 175000 40 
7 8500 60 7500 40 185000 60 175000 40 
8 8500 60 7500 55 185000 60 175000 55 
9 8500 60 7500 55 185000 60 175000 55 

(a): Setup Cost ($); (b): Production Cost ($)/unit. 
 
Table 4.3. Warehouses Cost data (in $)  

Warehouse1 Warehouse2 Warehouse3 Period 
Space Cost 

($)/M3 
Variable Cost 

($)/unit 
Space Cost 

($)/M3 
Variable Cost 

($)/unit 
Space Cost 

($)/M3 
Variable Cost 

($)/unit 
1 20 10 18 12 20 8 
2 20 10 18 12 20 8 
3 20 10 18 12 20 8 
4 20 10 18 12 20 8 
5 20 10 18 12 20 8 
6 20 10 18 12 20 8 
7 20 10 18 12 20 8 
8 22 12 19 14 22 10 
9 22 12 19 14 22 10 

 
Table 4.4. Transportation cost data (in $)  

$/ unit Plant1 Plant2 Customer1 Customer2 
Warehouse1 30 50 40 50 
Warehouse2 90 10 80 60 
Warehouse3 70 40 70 20 

 
By varying any combination of capacity constraints, demand models, and production cost, 

inventory cost as well as transportation cost, we generated 36 test problems. To illustrate the 
impact of different factors on network with capacitated facilities, we consider 4 different 
configurations of demands and setup cost. Then, for each configuration we have 3 scenarios with 
production capacity changes and 4 scenarios in term of warehouse capacity. In all configurations, 
we assume that there are no changes in other cost parameters as shown in Table 4.3 and 4.4. 

The optimal product produced and product movements as well as the optimal total costs are 
computed for each configuration under all scenarios. The experiments were conducted on 
personal computer with Pentium IV 2 GHz and 512 Mbyte memory. 

In all configuration scenarios, we observe that the optimal solution is obtain when the 
capacity constraints not to small. If we put too small capacity value, it will force model not to find 
the optimal solution. We observe a reduce in total costs when we change the capacity of plants 
and warehouses. 

We find a change in system behavior when we increase the setup cost very high. The system 
tends to increase the production level to maximum capacity and increase total inventory hold in 
several periods. The maximum values of total cost reduction are achieved when we increase the 
warehouse capacity to 4000 units. No cost reduction happens beyond that capacity value, see (a) 
in Fig 4.1. However, if we increase the setup cost very high and we increase plant capacity, we 
will obtain total cost reduction in all warehouse capacity observed ((b) in Fig 4.1.). Solution time 
will also increase as we increase the set of capacity, however the value still below 0.01 cpu 
seconds. 



When we extend our model by adding the transportation network capacity on base model, we 
observe that the total cost value increases. For example, with plant1 and plant2’s capacity: 4000 
unit and 3000 unit respectively, and warehouse capacity: 3000 unit, total cost value increase from 
3.65M to 3.98M if we limit the maximum product that can be transported in 1000 unit.  

To observe the impact of capacitated transportation line on the increment of total cost, we 
experiment with different arch capacities, i.e. 25%, 50%, 75% of the warehouses capacity. From 
computational we found that, as the capacity of transportation line getting tight, the total cost will 
increase higher. The behavior of inventory holding in warehouses is correlated with the value of 
transportation capacity. As we reduce the transport capacity, warehouses tend to create more 
inventories over period T. The system create inventory in warehouses almost in all periods. 
 
Table 4.5. Data test with 50% transportation capacity and without  
Warehouse 

 Cap 

Total Cost With 50% 
Warehouse Capacity 

(a) 

Total Cost with 
Capacity= 1500

(b) 

Total Cost with 
No Capacity 

(c) 

% 
[(a)-(c)]/(c) 

% 
[(b)-(c)]/(c) 

2000 4.00E+06 3.7472E+06 3.67E+06 9.01% 1.99% 
3000 3.73E+06 3.7323E+06 3.65E+06 2.30% 2.30% 
4000 3.67E+06 3.7323E+06 3.65E+06 0.71% 2.31% 
5000 3.65E+06 3.7323E+06 3.65E+06 0.08% 2.31% 

 
Table 4.5 displays the effect of transportation capacity on total cost with respect to 

warehouse capacity. Value in (a) is the total cost if we use 50% warehouse capacity as 
transportation capacity, value in (b) is the total cost if we use fixed transportation capacity = 1500 
unit, and value in (c) is the total cost with no transportation capacity. From this result, if we use 
fixed transportation capacity (1500 unit), the value of total cost increase 2.22% (average) as the 
warehouse capacity increase. It will increase as the warehouse capacity increase. 

When we allow the system to handle backorders, our computational results show that the 
problem getting harder to solve. We experiment with any combination of warehouses capacity 
and demand model. The warehouses capacity is between 2000-5000 with 3 demand models. We 
found that as the warehouses capacity increase the total cost will decrease. Using the small 
capacity of warehouses also will produce high error gap (average 2.07%) as compare to other 
(average 0.42%). As our data still small, the maximum running is around 2.00 cpu seconds. 

To illustrate the impact of different factors on network with capacitated facilities and multi 
product, we consider 2 different configurations of demands and setup cost. Then, for each 
configuration we have 3 scenarios with production capacity changes and 3 scenarios of 
warehouse capacity changes. In all configurations, we assume that there are no changes in other 
cost parameters. 

Similar with our result in single-product model, in all scenarios of our multi-product test data 
we observe that the optimal solution is obtain when the capacity constraints not to small. Using 
too small capacity value, it will force model not to find the optimal solution. In our cases, when 
we set the plants capacity below 4000 units, no integer solution found. Therefore, to analyze our 
system behavior, we use capacity higher than 4000 units.     
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Fig. 4.1. Effect of setup cost with total cost 



As we increase the production capacity as well as warehouse, total cost will reduce. If we 
look at the effect of setup cost changes, when we increase the setup cost very high again the 
system tends to increase the production level to maximum capacity and increase total inventory 
hold in several periods. This situation is similar with single item model.  

 
 
5. Conclusion 

 
In this paper, models to deal with single-product multi-facilities multi-periods as well as 

multi products that used to improve logistics network performance have been presented. Our 
logistics network model is an integrated model in a two-stage that consists of a set plant, a set of 
warehouse, and a set of customer point. The plants produce product to satisfy customer demand 
over period T where demand is expressed as a forecasted real demand. We optimize the network 
performance by minimizing its total cost (production, transportation, and inventory holding 
costs), and plan the inventory at warehouses over period of time. We model the problem as a 
network flow problem. 

We found from the computational result, base model can obtain the optimal solution better 
if the capacities of facilities are increased. Using too small capacity value will force model not to 
find the optimal solution. Any combination of facilities capacity increment can reduce the total 
cost. In the following, by introducing transportation capacity and backordering, it will increase 
the objective value and solution time as the problem getting harder to solve. We find that the 
behavior of inventory holding in warehouses is correlated with the value of transportation 
capacity. As we reduce the transport capacity, warehouses tend to create more inventories over 
period T. Similar with our result in single-product model, in all scenarios of our multi-product test 
data we observe that the optimal solution is obtain when the capacity constraints not to small. As 
we increase the production capacity as well as warehouse, total cost will reduce. 
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