

PROCEEDING #3rd

Yogyakarta - Indonesia 10 December 2020

ARTIFICIAL INTELLIGENCE for SOCIAL INTERACTIONS

isriti.akakom.ac.id

121

2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) took place 10 December 2020 in Yogyakarta, Indonesia

IEEE catalog number:	CFP20AAH-PRT
ISBN:	978-1-7281-8404-3

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. Copyright © 2020 by IEEE.

International Seminar on Research of Information Technology and Intelligent Systems

The 3rd ISRITI 2020

10 December 2020

STMIK AKAKOM YOGYAKARTA

Jalan Raya Janti no 143, Karang Jambe, Banguntapan, Bantul Yogyakarta, Indonesia 55198 Phone: +<u>62 858-4813-5411</u> (whatsapp only) | Email: <u>isriti@akakom.ac.id</u> www.isriti.akakom.ac.id

REVIEWERS

Dr. Intan Ermahani A. Jalil Mr. Azizi Abdullah Dr. Tapodhir Acharjee Mr. Ibrahim Ahmad Mr. Mohd Khairul Ikhwan Bin Ahmad Mr. Syed Umaid Ahmed NED Dr. Michele Albano Dr. Baba Alhaji Dr. Shajith Ali Dr. Anas Mohammad Ramadan AlSobeh Dr. Rakan Khalil Antar Mr. Eko Aribowo Dr. Arti Arya Dr. Ahmad Ashari Dr. Aslina Baharum Dr. Maria Chiara Caschera Prof. Mu-Song Chen Dr. Tai-Chen Chen Dr. Wichian Chutimaskul Prof. Domenico Ciuonzo Mr. Akhmad Dahlan Mrs. Ariesta Damavanti Dr. Andreas Dewald Mr. Andi Wahju Rahardjo Emanuel Dr. Seyed Ebrahim Esmaeili Dr. Noriko Etani Mr. Edi Faizal Dr. Ahmad Nurul Fajar Mr. Ridi Ferdiana Dr. Dhomas Hatta Fudholi Mrs. Zoohan Gani Mr. Alireza Ghasempour Dr. Javier Gozalvez Mr. Gunawan Gunawan Mr. Ibnu Hadi Purwanto Mr. Rifqy Hakimi Mr. Byeong-jun Han Mr. Seng Hansun Dr. Sa'adah Hassan Mr. Leonel Hernandez Mr. Roberto Carlos Herrera Lara Dr. Mohd Hanafi Ahmad Hijazi Dr. Danial Hooshyar Mr. Ramkumar Jaganathan Mr. Arihant Kumar Jain Dr. Muhammad Herman Jamaluddin Prof. Biao Jiang Prof. Dimitrios Kallergis Dr. Hiroshi Kamabe Dr. Hasan Ali Khattak Dr. Praveen Khethavath Mrs. Kartika Candra Kirana Dr. Vassilis Kodogiannis Mr. Domy Kristomo Dr. Armin Lawi Dr. Suryadiputra Liawatimena Dr. Pavel Loskot Mr. Mahdin Mahboob

Universiti Teknikal Malaysia Melaka, Malaysia Universiti Kebangsaan Malaysia, Malaysia Assam University, Silchar, India Universiti Teknikal Malaysia Melaka, Malaysia Universiti Tun Hussein Onn Malaysia, Malaysia University of Engineering and Technology, Pakistan Aalborg University, Denmark Nigerian Defence Academy, Niger SSN College of Engineering, Chennai, India Yarmouk University, Jordan Northern Technical University, Iraq Ahmad Dahlan University. Indonesia PESIT-Bangalore South Campus, India Gadiah Mada University. Indonesia Universiti Malaysia Sabah, Malaysia CNR, Italy Electrical Engineering, Da-Yeh University, Taiwan MAXEDA Technology, Taiwan King Mongkut's University of Technology Thonburi, Thailand University of Naples Federico II, IT, Italy Universitas Amikom Yogyakarta, Indonesia STMIK Akakom Yogyakarta, Indonesia ERNW Research GmbH, Germany Universitas Atma Jaya Yogyakarta, Indonesia American University of Kuwait, Kuwait All Nippon Airways Co., Ltd., Japan STMIK AKAKOM Yogyakarta, Indonesia Bina Nusantara University, Indonesia Universitas Gadjah Mada, Indonesia Universitas Islam Indonesia, Indonesia Victoria University, Australia ICT Faculty, USA Universidad Miguel Hernandez de Elche, Spain Politeknik Negeri Medan, Indonesia Universitas AMIKOM Yogyakarta, Indonesia ITB, Indonesia Soongsil University, Korea (South) Universitas Multimedia Nusantara, Indonesia Universiti Putra Malaysia, Malaysia ITSA University, Colombia National Polytechnic School, Ecuador Universiti Malavsia Sabah. Malavsia Korea University, Korea (South) VLB Janakiammal College of Arts and Science, India Jaipur Engineering College & Research Centre, India Universiti Teknikal Malaysia Melaka, Malaysia The City University of New York, USA University of West Attica, Greece Gifu University, Japan COMSATS University, Islamabad, Pakistan LaGuardia Community College, USA Universitas Negeri Malang, Indonesia University of Westminster, United Kingdom (Great Britain) STMIK AKAKOM Yogyakarta, Indonesia Hasanuddin University, Indonesia Bina Nusantara University, Indonesia Swansea University, United Kingdom (Great Britain) Stony Brook University, USA

Dr. Sukrisno Mardivanto Mrs. Prita Dewi Mariyam Mr. Win Maung Ms. Maria Mediatrix Dr. Ahmed Toaha Mobashsher Mrs. Haslizatul Mohamed Hanum Dr. Othman Mohd Prof. Philip T Moore Prof. Muhammed Bashir Mu'azu Dr. Amrit Mukherjee Dr. Sudi Mungkasi Dr. I Wayan Mustika Mr. Shah Nazir Dr. Kok-Why Ng Dr. Ruzelita Ngadiran Mr. Muhammad Agung Nugroho Dr. Prapto Nugroho Dr. Nitish Ojha Dr. Ilker Ali Ozkan Dr. Kiran Sree Pokkuluri Dr. N. Prabaharan Dr. Esa Prakasa Dr. Anand R. Prasad Mr. Edy Pravitno Dr. Tri K Priyambodo Dr. Bambang Purnomosidi Dwi Putranto Dr. Yuansong Qiao Dr. Ali Rafiei Mrs. Sri Redjeki Dr. Dedi Rohendi Dr. Didi Rosivadi Dr. Rosaria Rucco Prof. Savantam Sarkar Dr. Mithileysh Sathiyanarayanan Mr. Vaibhav Dudhaji Saundarmal Dr. Enny Sela Mrs. Anindita Septiarini Mrs. Amel Serrat Mr. De Rosal Ignatius Moses Setiadi Dr. Iwan Setyawan Dr. Suhail Najm Shahab Dr. Aditi Sharma Dr. Abdul Samad Shibghatullah Prof. Sanggyu Shin Dr. Amit Prakash Singh Dr. Dhananjay Singh Mr. Wangjam Niranjan Singh Mr. Vladislav Skorpil Prof. Iickho Song Prof. Yi-Jen Su Dr. Sritrusta Sukaridhoto Mr. Totok Suprawoto Dr. Nico Surantha Mr. Edhv Sutanta Prof. Srinivasulu Tadisetty Ms. Ivanna Timotius Dr. Leonardo Henrique Tomassetti Ferreira Neto Dr. Oyas Wahyunggoro Prof. Julian L Webber Dr. Adi Wibowo

Institut Teknologi Bandung, Indonesia Universitas Indonesia, Indonesia Victorian Institute of Technology, Australia STMIK AKAKOM, Indonesia The University of Queensland, Australia Universiti Teknologi MARA, Malaysia Universiti Teknikal Malaysia Melaka, Malaysia Lanzhou University, China Ahmadu Bello University, Zaria, Nigeria Jiangsu University, China Sanata Dharma University, Indonesia Universitas Gadjah Mada, Indonesia University of Peshawar, Pakistan Multimedia University, Malaysia Universiti Malaysia Perlis, Malaysia STMIK AKAKOM Yogyakarta, Indonesia Universitas Gadjah Mada, Indonesia Sharda University, Greater Noida, UP, India Selcuk University, Turkey Shri Vishnu Engineering College for Women, India SASTRA Deemed University, India Indonesian Institute of Sciences, Indonesia NEC Corporation, Japan STMIK AKAKOM Yogyakarta, Indonesia Universitas Gadjah Mada, Indonesia STMIK Akakom, Indonesia Athlone Institute of Technology, Ireland University of Technology Sydney, Australia STMIK AKAKOM Yogyakarta, Indonesia Universitas Pendidikan Indonesia, Indonesia Indonesian Institute of Sciences, Indonesia University of Naples Parthenope, Italy Vijava Vittala Institute of Technology, India MIT Square, United Kingdom (Great Britain) Marathwada Institute of Technology, Aurangabad, India Universitas Teknologi Yogyakarta, Indonesia Univeristas Mulawarman, Indonesia USTO MB, Algeria Dian Nuswantoro University, Indonesia Satya Wacana Christian University, Indonesia Northern Technical University, Iraq Quantum University, Roorkee, Uttarakhand, India UCSI University, Malaysia Tokai University, Japan Guru Gobind Singh Indraprastha University, India Hankuk University of Foreign Studies, Korea (South) Assam University, India Brno University of Technology, Czech Republic Korea Advanced Institute of Science and Technology, Korea (South) Shu-Te University, Taiwan Politeknik Elektronika Negeri Surabaya, Indonesia STMIK AKAKOM Yogyakarta, Indonesia Bina Nusantara University, Indonesia Institut Sains & Teknologi AKPRIND Yogyakarta, Indonesia Kakatiya University College of Engineering and Technology, India Satya Wacana Christian University, Indonesia University of Sao Paulo, Brazil UGM, Indonesia Osaka University, Japan Diponegoro University, Indonesia

Prof. Thaweesak Yingthawornsuk Dr. Chau Yuen Dr. Muhammad Yusuf Dr. Weiwen Zhang Dr. Sri Utami Zuliana Mr. Ferry Wahyu Wibowo Mr. Wijang Widhiarso Dr. Dedy Rahman Wijaya King Mongkut's University of Technology Thonburi, Thailand Singapore University of Technology and Design, Singapore University of Trunojoyo, Madura, Indonesia Guangdong University of Technology, China UIN Sunan Kalijaga, Indonesia Universitas Amikom Yogyakarta, Indonesia STMIK Global Informatika MDP Palembang, Indonesia Telkom University, Indonesia

AUTHOR INDEX

Author	Session	Start page	Title
A A B C D E F G H I J K L I	MNOPO	QRSTUW	XYZ
Abadi, Imam	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Abdillah, Rahmad	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Abdul-Jabbar, Jassim	3B.4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Adi, Sumarni	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Aditya, Christian Sri Kusuma	1D.5	152	Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network
Aditya, Trias	2G.5	604	<i>Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland</i>
Adrian, Ronald	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
Afdhal, Afdhal	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Affandi, Achmad	1 G. 1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Agustina, Dina	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Akbar, Renal	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
Akhsanta, Muhammad	2E.6	525	Text-Independent Speaker Identification Using PCA-SVM Model
Al Aufa, Badra	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Al Maki, Wikky	1 B. 8	73	Hybrid Method for Flower Classification in High Intra-class Variation
Alam, Sahirul	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network

Alamsyah, Rangga	3B.2	646	Speech Gender Classification Using Bidirectional Long Short Term Memory
Alfi, Farah	1F.2	227	Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya
Ali, Tarig Ahmed El Khider	1B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
Alief, Fahdiaz	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Amalia, Yasmin	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Amanaf, Muntaqo	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
Ambarwari, Agus	2B.7	389	Design and prototype development of internet of things for greenhouse monitoring system
Andriyani, Widyastuti	2B.6	383	A Comparative Study of Java and Kotlin for Android Mobile Application Development
	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Anggraeni, Martianda	1F.2	227	Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya
Annisa, Fadhilah Qalbi	1 B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
Antonius, Suyanto	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement
Anugraha, Tides	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Anwar, Muchamad Taufiq	1C.1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Archi, Muhammad	1E.2	182	Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization
Ardiansyah, Agus	2B.5	377	Prototype Design of IoT (Internet of Things)-based Load Monitoring System
Arfian, Nur	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Ariananda, Dyonisius	1F.5	245	Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction

Aripriharta, A.	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Arisanty, Deasy	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Arisya, Khairunnisa	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Armin, Farid	1G.4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5	289	Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
Arwoko, Heru	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Asfihani, Tahiyatul	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
Asriningtias, Salnan	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Astuti, Eha Renwi	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Astuti, Yenni	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
Asyrofi, Rakha	2A.5	332	Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing
B A B C D E F G H I	JKLMNOPQE	R S T U W	XYZ

Basari, Basari	2B.3	365	Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution
Bejo, Agus	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
	1B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Belangour, Abdessamad	3A.4	638	A Kubernetes Algorithm for scaling Virtual Objects
Borman, Rohmat	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Budi Setiawan, Fajar	1E.8	215	Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm
Budiman, Edy	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Bustamam, Alhadi	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
C A B C D E F G H I J K	LMNOPO	QRSTUW	X Y Z
Cahyani, Denis	1B.4	56	Indonesian Parsing using Probabilistic Context- Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK)
Chotimah, Khusnul	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
D A B C D E F G H I J K	LMNOPO	QRSTUW	XYZ
Daelami, Ahmad	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Darari, Fariz	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Delfianti, Rezi	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Dewantara, Mahardira	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Dirgantoro, Burhanuddin	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Djawas, Faizah	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Dwijayanti, Suci	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Dwiputra, Richard	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
E A B C D E F G H I J K	LMNOPQ	QRSTUW	XYZ
Eka Sari, Wahyuni	18.1	42	Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier

Ekaniza, Raki	1 A. 5	21	PSO-Learned Artificial Neural Networks for Activity Recognition
Eko Sulistyo, Meiyanto	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
El Khalyly, Badr	3A.4	638	A Kubernetes Algorithm for scaling Virtual Objects
Elsa, Corry	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD
Emanuel, Andi Wahju Rahardjo	1C.3	100	Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms
Engel, Ventje	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
F A B C D E F G H I J K L	MNOP	QRSTUW	X Y Z
Fachrie, Muhammad	2G.1	583	Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot
Fadhilah, Amanda	1 D. 8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Fahmi, Fahmi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Fahrudin, Tresna	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Fanani, M.	1C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm
Faraby, Muhira	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Fardan, Fardan	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Farrell, Mochammad	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
Fatichah, Chastine	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Ferdiansyah, Indra	1C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm

	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F	
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller	
Firdaus, Diash	1D.7	164	DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest	
Firdaus, Diaz	2D.6	476	Topic-Based Tweet Clustering for Public Figures Using Ant Clustering	
Fitria, Irma	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control	
Fitriati, Andi	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization	
Frannita, Eka	2E.2	499	Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic	
G A B C D E F G H I J K L	M N O P	QRSTUW	XYZ	
Ginting, Ishak	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network	
Gitakarma, Made Santo	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol	
Gumilar, Langlang	3E.2	711	Variations in the Placement of DFIG in the Power System to Changes of Short Circuit Current	
Gunawan, Dadang	1E.2	182	Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization	
Gupta, Anju	2C.9	445	Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter	
H A B C D E F G H I J K L M N O P Q R S T U W X Y Z				
Hadikurniawati, Wiwien	1C.1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia	
Halim, Arwin	2A.4	326	Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction	
Hamed, Fatima	1B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network	

Hamka Ibrahim, Muhammad	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Hanifa, Annisa	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Harintaka, Harintaka	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
Hartanto, Rudy	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
	2G.3	593	Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
Hasibuan, Siti	1 B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Hasim, Sitronella	1F.8	262	Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network
Hastuti, Puji	2G.4	599	Application For Detection Of Pedestrian Position On Zebra Cross
Hermawan, Tofan	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Hermawati, Hermawati	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Herumurti, Darlis	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Hery, Hery	1 C. 1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Hidayat, Firhat	1E.6	203	Network Attack Detection System Using Filter- based Feature Selection and SVM
Hidayat, Risanuri	3B.1	642	Comparison of Feature Extraction for Speaker Identification System
	1F.5	245	Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction
	1 B.3	52	Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic
Hidayat, Taufik	2G.7	615	Validation of Information Technology Value Model for Petroleum Industry

	2G.6	609	Model Development of Information Technology Value for Downstream Petroleum Industry
	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Hikmah, Awaliyatul	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Hikmarika, Hera	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Hikmaturokhman, Alfin	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area
Hilmizen, Naufal	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
Hindrayani, Kartika	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Husin, Zaenal	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Hutami, Augustine	2E.2	499	Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic
I A B C D E F G H I J K L	MNOPO	QRSTUW	XYZ
Iftadi, Irwan	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Indriawati, Katherin	1G.6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor
Irawan, Arif	2B.8	394	Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition
Irnawan, Roni	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Iskandar, Nur Muhamad	1G.1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Isnandar, Suroso	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System

Istikmal, Istikmal	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
	2B.8	394	Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition
J A B C D E F G H I J K L N	ANOPO	QRSTUW	X Y Z
Jati Anggoro, Wisang	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
Jatmiko, Wisnu	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4
Julzarika, Atriyon	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
K A B C D E F G H I J K L	MNOP	QRSTUW	XYZ
Kamirul, Kamirul	1 G. 4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5	289	Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
Karna, Nyoman	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Karo, Ferdinanta	1G.3	278	5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta
Khairunnisa, Syifa	2D.5	471	Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification
Komarudin, Udin	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Kouty, Shreyus	2C.8	439	Multilayer Secure Hardware Network Stack using FPGA
Krisnadi, Dion	1 C. 1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Kristiani, Eveline	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

Kunang, Yesi	1 D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Kurniawati, Yulia Ery	1B.1	42	Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier
Kusnandar, Kusnandar	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
L A B C D E F G H I J K L I	MNOP	QRSTUW	X Y Z
Lagunov, Alexey	3E.1	705	Features of the Use of Solar Panels at Low Temperatures in the Arctic
Lee, HoonJae	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Lee, Sang-Gon	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Lin, Haitao	1A.2	12	Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy
Lubis, Ainul	2B.3	365	Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution
Lukas, Samuel	1 C .1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
M A B C D E F G H I J K L	M N O P	QRSTUW	V X Y Z
Mahamad, Abd Kadir	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Mahardiko, Rahutomo	2G.7	615	Validation of Information Technology Value Model for Petroleum Industry
	2G.6	609	Model Development of Information Technology Value for Downstream Petroleum Industry
	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Mahersatillah, Andi	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car
Mahfiz, Syiti	2D.8	488	Aspect-based Opinion Mining on Beauty Product Reviews

Manik, Lindung	3A.2	627	Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Mardhotillah, Rinda	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Masngut, Ibnu	2B.2	360	Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Maulana, Eka	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
Mawaldi, Ikbal	1D.3	140	Experimental Security Analysis for Fake eNodeB Attack on LTE Network
Mootha, Siddartha	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Mubarok, Husein	28.5	377	Prototype Design of IoT (Internet of Things)-based Load Monitoring System
Muchtar, Akhyar	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Muchtar, Kahlil	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Muflikhah, Lailil	1A.8	37	Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method
Muharram, Muh.	2D.4	467	Firefly Algorithm-based Optimization of Base Transceiver Station Placement
Mujahidin, Irfan	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Muladi, Muladi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Mulyanto, Agus	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4
Munadi, Rendy	1D.7	164	DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest
Mungkasi, Sudi	2A.2	321	Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem
Mursanto, Petrus	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Murwantara, I Made	1 C .1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea
Mustika, I Wayan	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
	1E.8	215	Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm
	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area
	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
	2G.4	599	Application For Detection Of Pedestrian Position On Zebra Cross
Muthchamy Sellamuthu, Karthika Devi	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Muttaqin, Didik	2D.3	463	Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model
N A B C D E F G H I J K L	MNOP	QRSTUW	XYZ
N. Fathee, Hala	3 B. 4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Nafi'iyah, Nur	3C.2	661	The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images
Nagy, Adam	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
Najmurrokhman, Asep	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Nam, Andrew	1A.1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Nasaruddin, Nasaruddin	2E.3	509	Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos
Nashiruddin, Muhammad Imam	1F.6	251	Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer
	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination
Nasr-Azadani, Mohamad	1 A. 1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform

Nasri, Muhammad	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Nguyen-Quoc, Huy	2D.1	451	Gender recognition based on ear images: a comparative experimental study
Nivaan, Goldy Valendria	1C.4	106	Analytic Predictive of Hepatitis using The Regression Logic Algorithm
Noer, Astriany	1G.4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
	1G.5	289	Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites
NQ, Mohammad Arifin	3A.2	627	Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Nugraha, Syechu	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Nugroho, Hanung	2E.2	499	Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic
Nugroho, Lukito	2G.3	593	Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
	2G.4	599	Application For Detection Of Pedestrian Position On Zebra Cross
Nur, Darfiana	2A.1	310	On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Nurdewanto, B.	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Nurfadillah, Raditya	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Nurlina, Elin	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation

Nurmaini, Siti	1 D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Nurtiyasari, Devi	3C.3	667	COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures
Nurwarsito, Heru	1E.1	176	Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment
Nusantara, Damai	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
O A B C D E F G H I J K L	MNOP	QRSTUW	XYZ
Octarina, Sisca	2A.1	315	The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost
Oktian, Yustus	1E.3	187	TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication
Osman, Safaa	1 B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
P A B C D E F G H I J K L	MNOPO	QRSTUW	X Y Z
Perkasa, Gregorius	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Permana, Indra	2F.1	534	Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing
Permanasari, Adhistya	2B.1	354	The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype
Petho, Mate	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
Prakoso, Rahardi	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Pramono, Subuh	2C.6	428	Design and Development of Bit Error Measurement using FPGA for Visible Light Communication
Prasetya, Suisbiyanto	1 G. 4	284	Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications
Prasetyawan, Purwono	2E.5	520	Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4

Prasetyo, Wisnu	2A.8	348	Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Prasojo, Radityo Eko	2D.2	457	Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products
Pratama, Denni	1A.4	17	Comparison of PSO, FA, and BA for Discrete Optimization Problems
Pratama, Gilang	2B.2	360	Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Pratama, Raditya	2G.3	593	Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method
Pratama, Yogaswara	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD
Pratiwi, Melati	3C.4	677	Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm
Priyadi, Ardyono	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Priyadi, Yudi	2A.5	332	Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing
Priyambodo, Tri	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol
	1D.1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Prutphongs, Ponsuda	2G.2	588	Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost
Pujianto, Utomo	2A.8	348	Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Purnomo, Hindriyanto	1F.7	257	Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network
	3D.4	700	A Modified Deep Convolutional Network for Covid- 19 detection based on chest X-ray images
Purwanto, Era	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three

			Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Purwanto, Yudha	1 D.7	164	DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest
Puspita, Fitri Maya	2F.5	556	Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues
Puspitasari, Novianti	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Putra, Agfianto	1D.1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Putranto, Bambang Purnomosidi Dwi	2B.6	383	A Comparative Study of Java and Kotlin for Android Mobile Application Development
Putranto, Lesnanto Multa	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Putri, Andi	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization

Q A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Qomariyah, Nunung Nurul	1C.8	123	Predicting User Preferences with XGBoost Learning to Rank Method
Qudsi, Ony	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller

R A B C D E F G H I J K L M N O P Q R S T U W X Y Z

R., Christiono	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Rachmawaty, Dina	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area

Rahayu, Eny Sukani	1F.5	245	Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction
Ramadhan, Firdiansyah	2E.1	494	Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement
Ramadhani, Kurniawan	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
Ratchagit, Manlika	2A.1	310	On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Rianti, Desi	1G.2	272	Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area
Ridhatama, Hasbi	2F.5	551	Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation
Rifa'i, Nanang	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor
Rifadil, Mochammad	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Riyadi, E. Hadiyono	1D.1	129	Real-time Testing on Improved Data Transmission Security in the Industrial Control System
Riyantoko, Prismahardi	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Robbi, Niki	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Romadhony, Ade	2D.8	488	Aspect-based Opinion Mining on Beauty Product Reviews
Rosadi, Dedi	3C.3	667	COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures
	1B.2	48	Prediction of forest fire occurrence in peatlands using machine learning approaches
Rosselina, Linda	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Ruldeviyani, Yova	2G.1	577	Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

	1D.8	170	Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users
Rusdiyanto, Dian	2F.7	567	Comparison Of Eight Elements Array Structure Design For Coastal Surveillance Radar
Rusli, Muhammad	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F

S A B C D E F G H I J K L M N O P Q R S T U W X Y Z

S, Subaryono	2G.5	604	Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland
Sa'adah, Siti	1 A .7	32	Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm
	3C.4	677	Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm
Safitri, Eristya	2A.7	344	Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression
Sahmoud, Shaaban	3 B.4	655	A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments
Samudera, Satriya	2C.2	406	Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller
Santoso, Fian	3D.4	700	A Modified Deep Convolutional Network for Covid- 19 detection based on chest X-ray images
Sarjiya, Sarjiya	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System
	2C.1	400	Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System
Sarwinda, Devvi	1A.6	26	The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X- Ray Images
Sasmito, Adityan	1C.5	111	Comparison of The Classification Data Mining Methods to Identify Civil Servants in Indonesian Social Insurance Company
Sediyono, Eko	1F.7	257	Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network

Sendari, Siti	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic
Setianingsih, Casi	2E.4	514	Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine
Setiawan, Florentinus Budi	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement
Setijadi, Eko	1 G. 1	267	A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction
Setya Budi, Avian Lukman	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Severin, Ionuț-Cristian	3C.3	672	The Head Posture System Based on 3 Inertial Sensors and Machine Learning Models: Offline Analyze
Shadieq, Nuur	1B.6	62	Leveraging Side Information to Anime Recommender System using Deep learning
Siahaan, Daniel	2A.5	332	Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing
Simbolon, Josua	1 G. 6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor
Sinaga, Frans	2A.4	326	Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction
Sirait, Pahala	2A.4	326	Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction
Siregar, Faisal	1B.8	73	Hybrid Method for Flower Classification in High Intra-class Variation
Siswantoro, Joko	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Siswantoro, Muhammad	3D.1	682	Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine
Soeprijanto, Adi	3E.3	716	Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition
Solihah, Nomarhinta	1F.6	251	Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer
	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination

Sonalitha, Elta	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Sridhar, Sashank	3E.4	721	A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention
Stiawan, Deris	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
Suban, Ignasius	1C.3	100	Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms
Subchan, Subchan	1G.8	306	Ship Heading Control Using Nonlinear Model Predictive Control
Subriadi, Apol	2F.2	539	Consumer Behavior in Social Commerce Adoption: Systematic Literature Review
Sudaryanto, Arif	2C.3	412	Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F
Sudiharto, Indhana	1C.7	117	Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm
Sugianto, Sugianto	2A.6	338	Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms
Sulistiadi, Wahyu	2F.6	562	Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic
Sulistiyono, Mulia	1C.2	94	The Best Parameter Tuning on RNN Layers for Indonesian Text Classification
Sulistyo, Selo	1E.5	198	Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network
Sultoni, Arif	2F.8	572	Implementation of Fuzzy-PID Based MPPT for Stand Alone 1.75 kWP PV System
Sumadi, Fauzi	1D.5	152	Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network
Sumiharto, Raden	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol

Suprapto, Bhakti	1D.4	146	Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization
	3A.1	621	Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network
Supriyanto, Eko	1B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
	1B.7	68	Risk Prediction of Major Depressive Disorder using Artificial Neural Network
Suryanto, Yohan	1F.3	233	Android Forensic Tools Analysis for Unsend Chat on Social Media
Susanto, Misfa	1F.8	262	Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network
Sussi, Sussi	1D.6	158	Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models
Sutivong, Daricha	2G.2	588	Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost
Suwadi, Suwadi	1E.4	192	Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity
Suyanto, Suyanto	2D.4	467	Firefly Algorithm-based Optimization of Base Transceiver Station Placement
	2E.1	494	Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement
	1A.4	17	Comparison of PSO, FA, and BA for Discrete Optimization Problems
	2E.6	525	Text-Independent Speaker Identification Using PCA-SVM Model
	2D.3	463	Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model
	1A.5	21	PSO-Learned Artificial Neural Networks for Activity Recognition
	2E.3	505	Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders
	3B.3	650	Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine
	2D.6	476	Topic-Based Tweet Clustering for Public Figures Using Ant Clustering

xxxiii

	2D.5	471	Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification
	3B.2	646	Speech Gender Classification Using Bidirectional Long Short Term Memory
Suyanto, Yohanes	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol

T A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Taheri, Sahar	1 B.8	79	Personality Dimensions Classification with EEG Analysis using Support Vector Machine
Taufani, Agusta	2A.8	348	Students Academic Performance Prediction with k- Nearest Neighbor and C4.5 on SMOTE-balanced data
Truong Hoang, Vinh	2D.1	451	Gender recognition based on ear images: a comparative experimental study
Tung, Teresa	1 A. 1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform

U A B C D E F G H I J K L M N O P Q R S T U W X Y Z

Umam, Mohammad	1E.1	176	Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment
Usman, U	2C.4	418	The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization
Uyun, Shofwatul	3D.3	694	Feature Selection on Magelang Duck Egg Candling Image Using Variance Threshold Method

W A B C D E F G H I J K L M N O P Q R S T U W X Y Z

W, Bambang	1G.6	295	Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor		
	1G.7	301	Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor		
Wahyudi, Anung	28.7	389	Design and prototype development of internet of things for greenhouse monitoring system		
Wahyuni, Maria	2E.7	529	Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement		
Waluyo, Anita	2G.1	583	Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot		

Wardhani, Shinta Amalia	2F.2	539	Consumer Behavior in Social Commerce Adoption: Systematic Literature Review
Wati, Masna	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Wibisono, Radityo	2C.7	433	<i>Optimization Coagulation Process of Water</i> <i>Treatment Plant Using Neural Network and</i> <i>Internet of Things (IoT) Communication</i>
Wibowo, Agung	1B.6	62	Leveraging Side Information to Anime Recommender System using Deep learning
Wibowo, Ferry Wahyu	1F.7	257	Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network
Wibowo, Muhammad	1 A.7	32	Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm
Widians, Joan	2D.7	482	Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor
Widiyatmoko, Dany	3A.2	627	Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm
Widiyatmoko, Wahyu	1 C .1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Widyawan, Widy	1D.2	135	Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm
Widyawati, Dewi	2B.7	389	Design and prototype development of internet of things for greenhouse monitoring system
Wijayanto, Danur	1F.1	221	Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol
Winarno, Edy	1 C .1	83	Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia
Winursito, Anggun	2B.2	360	Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture
Witono, Timotius	2F.4	545	Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level
Wiwatanapataphee, Benchawan	2A.1	310	On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients
Wulandari, Eliandri	1F.4	239	Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination
X A B C D E F G H I J K L	MNOP	QRSTUW	XYZ

Xaphakdy, Khampaserth	1E.8	215	5 Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm				
Y A B C D E F G H I J K L M N O P Q R S T U W X Y Z							
Yadav, Uma	2C.9	445	Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter				
Yang, Yao	1A.1	1	Resource-Aware Pareto-Optimal Automated Machine Learning Platform				
Yazid, Setiadi	2F.4	545	Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level				
Yudhantomo, Thomas	2C.5	423	Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System				
Yudhistiro, Kukuh	1A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks				
Yugopuspito, Pujianto	1 C .1	89	Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea				
Yuliana, Mike	1E.4	192	Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity				
Yunanto, Prasti Eko	2D.5	471	Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification				
Yusran, Yusran	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car				
Yusrandi, Yusrandi	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic				
Z A B C D E F G H I J K L	MNOP	QRSTUW	XYZ				
Zaeni, Ilham Ari	2B.4	371	Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic				
Zahara, Soffa	2A.6	338	Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms				

Zainuddin, Zahir	3D.2	688	Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car
Zeng, Shuai	1 A.2	12	Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy
Zsedrovits, Tamas	3A.3	632	A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance
Zubair, Anis	1 A.2	7	Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks
Zulfira, Fakhira	3B.3	650	Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine
Zulkifli, Fitri	1E.7	209	Development of Smart Energy Meter Based on LoRaWAN in Campus Area

PAPER TITLES

5 A B C D E F G H I L M N O P Q R S T U V W

5 A B C D E F G H I L M N O P Q R S T U V W

5G New Radio (NR) Network Planning at Frequency 2,6 GHz in The Gold Triangle Area of Jakarta

5 A B C D E F G H I L M N O P Q R S T U V W

A bio-motivated vision system and artificial neural network for autonomous UAV obstacle avoidance

A Combination of Defected Ground Structure and Line Resonator for Mutual Coupling Reduction

A Comparative Study of Java and Kotlin for Android Mobile Application Development

A Kubernetes Algorithm for scaling Virtual Objects

Α

5

A Modified Deep Convolutional Network for Covid-19 detection based on chest X-ray images

A Robust Iris Segmentation Algorithm Based on Pupil Region for Visible Wavelength Environments

A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers' Purchasing Intention

Analysis of Indonesia's Internet Topology Borders at the Autonomous System Level

Analysis of Performance Index in Transmission Expansion Planning of Sulawesi's Electricity System

Analytic Predictive of Hepatitis using The Regression Logic Algorithm

Android Forensic Tools Analysis for Unsend Chat on Social Media

Application For Detection Of Pedestrian Position On Zebra Cross

Aspect-based Opinion Mining on Beauty Product Reviews

B 5 A B C D E F G H I L M N O P Q R S T U V W

Benchmarking Explicit Rating Prediction Algorithms for Cosmetic Products Blackbox Testing Model Boundary Value of Mapping Taxonomy Applications and Data Analysis of Art and Artworks

C 5ABCDEFGHILMNOPQRSTUVW

Case Study: AppDynamics Application as Business Intelligence to Support Digital Business Operations at PT PGD

Center of Gravity Method for Finding Center of Laser Beam Projection on Landslide Measurement Classification of Customer Actions on Digital Money Transactions on PaySim Mobile Money Simulator using Probabilistic Neural Network (PNN) Algorithm

Combined Firefly Algorithm-Random Forest to Classify Autistic Spectrum Disorders Comparative Analysis of DDoS Detection Techniques Based on Machine Learning in OpenFlow Network

Comparison Of Eight Elements Array Structure Design For Coastal Surveillance Radar

Comparison of Feature Extraction for Speaker Identification System

Comparison of PSO, FA, and BA for Discrete Optimization Problems

Comparison of The Classification Data Mining Methods to Identify Civil Servants in Indonesian Social Insurance Company

Comparison of the Latest DTM with DEM Pleiades in Monitoring the Dynamic Peatland

Consumer Behavior in Social Commerce Adoption: Systematic Literature Review

Convolutional Network and Moving Object Analysis for Vehicle Detection in Highway Surveillance Videos COVID-19 Chest X-Ray Classification Using Convolutional Neural Network Architectures

D 5ABCDEFGHILMNOPQRSTUVW

xxxviii

Dayak Onion (Eleutherine palmifolia (L) Merr) as An Alternative Treatment in Early Detection of Dental Caries using Certainty Factor

DDoS Attack Detection in Software Defined Network using Ensemble K-means++ and Random Forest Decision Support System for Power Plant Improvement Investment Using Life-Cycle Cost Design and Development of Bit Error Measurement using FPGA for Visible Light Communication Design and Implementation of SVPWM Inverter to Reduce Total Harmonic Distortion (THD) on Three Phase Induction Motor Speed Regulation Using Constant V/F

Design and prototype development of internet of things for greenhouse monitoring system Design of Optimal Satellite Constellation for Indonesian Regional Navigation System based on GEO and GSO Satellites

Designing Wireless Sensor Network Routing on Agriculture Area Using The LEACH Protocol Detection of Multi-Class Glaucoma Using Active Contour Snakes and Support Vector Machine Detection of Sensor Node-less Area Using A Genetic Algorithm for Wireless Sensor Network

Development and Implementation of Kalman Filter for IoT Sensors: Towards a Better Precision Agriculture Development of Smart Energy Meter Based on LoRaWAN in Campus Area

Development of Temperature and Humidity Control System in Internet-of-Things based Oyster Mushroom Cultivation

Development of The Personnel Monitoring System Using Mobile Application and Real-Time Database During the COVID19 Pandemic

Distributed Alternating Direction Multiplier Method Based on Optimized Topology and Nodes Selection Strategy Disturbance Observer-Based Speed Estimator for Controlling Speed Sensorless Induction Motor

E 5 A B C D E F G H I L M N O P Q R S T U V W

Effect of Android and Social Media User Growth on the Financial Technology Lending Borrowers and its Financing

Energy Management Efficiency and Stability Using Passive Filter in Standalone Photovoltaic Sudden Cloud Condition

Experimental Security Analysis for Fake eNodeB Attack on LTE Network Extraction Dependency Based on Evolutionary Requirement Using Natural Language Processing

F 5 A B C D E F G H I L M N O P Q R S T U V W

Facial Expression Recognition and Face Recognition Using a Convolutional Neural Network Feature Selection on Magelang Duck Egg Candling Image Using Variance Threshold Method Features of the Use of Solar Panels at Low Temperatures in the Arctic Firefly Algorithm-based Optimization of Base Transceiver Station Placement Fruits Classification from Image using MPEG-7 Visual Descriptors and Extreme Learning Machine

G 5 A B C D E F G H I L M N O P Q R S T U V W

Gender recognition based on ear images: a comparative experimental study Guided Genetic Algorithm to Solve University Course Timetabling with Dynamic Time Slot

H 5ABCDEFGHILMNOPQRSTUVW

Hybrid Method for Flower Classification in High Intra-class Variation

T

5 A B C D E F G H I L M N O P Q R S T U V W

Implementation of Fuzzy-PID Based MPPT for Stand Alone 1.75 kWP PV System

Implementation of Maximum Power Point Tracking on PV System using Artificial Bee Colony Algorithm Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

Indonesian Parsing using Probabilistic Context-Free Grammar (PCFG) and Viterbi-Cocke Younger Kasami (Viterbi-CYK)

Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression Indonesian Traffic Sign Recognition For Advanced Driver Assistent (ADAS) Using YOLOv4 Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms Initial Access in 5G mmWave Communication using Hybrid Genetic Algorithm and Particle Swarm Optimization

Interference Mitigation in Cognitive Radio Network Based on Grey Wolf Optimizer Algorithm

L 5ABCDEFGHILMNOPQRSTUVW

Leveraging Side Information to Anime Recommender System using Deep learning

M 5 A B C D E F G H I L M N O P Q R S T U V W

Measurement of Information Security Awareness Level: A Case Study of Online Transportation Users Measuring Instagram Activity and Engagement Rate of Hospital: A Comparison Before and During COVID-19 Pandemic

Minimization of Power Losses through Optimal Placement and Sizing from Solar Power and Battery Energy Storage System in Distribution System

Model Development of Information Technology Value for Downstream Petroleum Industry

Modification of 2.2 GHz S-Band Rectangular Patch Microstrip Antenna using Truncated Corner Method for Satellite Applications

Modification of Wireless Reverse Charging Scheme with Bundling Optimization Issues

Multi-Point Travel Destination Recommendation System In Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method

Multilayer Secure Hardware Network Stack using FPGA

Р

Multivariate Time Series Forecasting Based Cloud Computing For Consumer Price Index Using Deep Learning Algorithms

N 5 A B C D E F G H I L M N O P Q R S T U V W

Network Attack Detection System Using Filter-based Feature Selection and SVM

0 5 A B C D E F G H I L M N O P Q R S T U V W

On Parameter Estimation of Stochastic Delay Difference Equation using the Two m-delay Autoregressive Coefficients

Optimization Coagulation Process of Water Treatment Plant Using Neural Network and Internet of Things (IoT) Communication

Optimization of SV-kNNC using Silhouette Coefficient and LMKNN for Stock Price Prediction

5 A B C D E F G H I L M N O P Q R S T U V W

Papaya Disease Detection Using Fuzzy Naïve Bayes Classifier Particle Filter Based Speed Estimator for Speed Sensorless Control in Induction Motor Performance Analysis FSR and DSR Routing Protocol in VANET with V2V and V2I Models Performance Analysis of Temporally Ordered Routing Algorithm Protocol and Zone Routing Protocol On Vehicular Ad-Hoc Network in Urban Environment

Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia Performance Enhancement in Macro-Femto Network Using a Modified Discrete Moth-flame Optimization Algorithm

Performance Enhancement of Multi-User Key Extraction Scheme (MKES) Based on Imperfect Signal Reciprocity Performance Evaluation of Cell-Edge Femtocell Densely Deployed in OFDMA-Based Macrocellular Network Performance Evaluation of IPTV Multicast Service Testing for XGS-PON Optical Line Termination Performance Evaluation of XGS-PON Optical Network Termination for Enterprise Customer Personality Dimensions Classification with EEG Analysis using Support Vector Machine Predicting User Preferences with XGBoost Learning to Rank Method Prediction of forest fire occurrence in peatlands using machine learning approaches Prediction of Gross Domestic Product (GDP) in Indonesia Using Deep Learning Algorithm Prediction of Liver Cancer Based on DNA Sequence Using Ensemble Method Prototype Design of IoT (Internet of Things)-based Load Monitoring System Proximity-based COVID-19 Contact Tracing System Devices for Locally Problems Solution PSO-Learned Artificial Neural Networks for Activity Recognition

Q 5 A B C D E F G H I L M N O P Q R S T U V W

Quality Assessment of Digital Terrestrial Television Broadcast in Surabaya

R 5ABCDEFGHILMNOPQRSTUVW

Real-time Testing on Improved Data Transmission Security in the Industrial Control System Removing Noise, Reducing dimension, and Weighting Distance to Enhance k-Nearest Neighbors for Diabetes Classification

Resource-Aware Pareto-Optimal Automated Machine Learning Platform

Risk Prediction of Major Depressive Disorder using Artificial Neural Network

Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network

Robust Control Design Procedure and Simulation of PRES Controller having Phase-Locked Loop(PLL) control technique in Grid-Tied Converter

Royale Heroes: A Unique RTS Game Using Deep Reinforcement Learning-based Autonomous Movement

S 5 A B C D E F G H I L M N O P Q R S T U V W

Ship Heading Control Using Nonlinear Model Predictive Control Single Snapshot-Spatial Compressive Beamforming for Azimuth Estimation and Backscatter Reconstruction Smart Safe Prototype Based Internet of Things (IoT) with Face and Fingerprint Recognition Some Numerical and Analytical Solutions to an Enzyme-Substrate Reaction-Diffusion Problem Speaker Recognition For Digital Forensic Audio Analysis Using Support Vector Machine Speaker Recognition Using Mel Frequency Cepstral Coefficient and Self-Organising Fuzzy Logic Speech Emotion Detection Using Mel-Frequency Cepstral Coefficient and Hidden Markov Model Speech Gender Classification Using Bidirectional Long Short Term Memory Stemming Javanese: Another Adaptation of the Nazief-Adriani Algorithm Students Academic Performance Prediction with k-Nearest Neighbor and C4.5 on SMOTE-balanced data Supervised Deep Learning for Thyroid Nodules Classification Based on Margin Characteristic

T 5ABCDEFGHILMNOPQRSTUVW

Techno-Economic 5G New Radio Planning at 26 GHz Frequency in Pulogadung Industrial Area Text-Independent Speaker Identification Using PCA-SVM Model The Best Parameter Tuning on RNN Layers for Indonesian Text Classification The Head Posture System Based on 3 Inertial Sensors and Machine Learning Models: Offline Analyze The Multimodal Transfer Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images

The N-Sheet Model in Capacitated Multi-Period Cutting Stock Problem with Pattern Set-Up Cost The Single Tuned Filter Planning to Mitigate Harmonic Pollution in Radial Distribution Network Using Particle Swarm Optimization

The Use of Pre and Post Processing to Enhance Mandible Segmentation using Active Contours on Dental Panoramic Radiography Images

The User Experience effect of Applying Floating Action Button (FAB) into Augmented Reality Anatomy Cranium Media Learning Prototype

Three Phase Induction Motor Dynamic Speed Regulation Using IP Controller

Topic-Based Tweet Clustering for Public Figures Using Ant Clustering

TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication

U 5ABCDEFGHILMNOPQRSTUVW

Unstructured Road Detection and Steering Assist Based on HSV Color Space Segmentation for Autonomous Car

V 5ABCDEFGHILMNOPQRSTUVW

Validation of Information Technology Value Model for Petroleum Industry Variations in the Placement of DFIG in the Power System to Changes of Short Circuit Current

W 5ABCDEFGHILMNOPQRSTUVW

Website Design for Locating Tuna Fishing Spot Using Naïve Bayes and SVM Based on VMS Data on Indonesian Sea

Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

Yesi Novaria Kunang^{1,2} ¹Doctoral Engineering Departement, Faculty of Engineering, Universitas Sriwijaya, ²Computer Science Departement, Universitas Bina Darma ^{1,2}Palembang, Indonesia yesinovariakunang@binadarma.ac.id Siti Nurmaini* Intelligent System Research Group, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia sitinurmaini@gmail.com

Bhakti Yudho Suprapto Electrical Engineering Departement, Universitas Srwijaya, Palembang, Indonesia bhakti@ft.unsri.ac.id Deris Stiawan Computer Networking & Information Systems, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia deris@unsri.ac.id

Abstract— The growth of the Internet of Things (IoT) presents challenges in the field of security. The Intrusion Detection System is an alternative to protecting the internet of things. In this study, we propose an intrusion detection system model that combines unsupervised algorithm and a deep neural network. Autoencoder as unsupervised learning algorithm has a function as a feature extractor that speeds up the learning process on a deep neural network. The performance of a deep learning model depends heavily on the selection of hyperparameters of neural network architecture. In this case, we used Bayesian Hyperparameter Optimization to perform hyperparameter tuning of deep learning models with various activation and weight initialization techniques. The accumulation result is useful to help determine the correct activation function and weight initialization and the hyperparameters that most influence the deep learning model. The results of this study show that Bayesian hyperparameter optimization can improve classification results significantly. Evaluation using the BoT-IoT dataset, the classification accuracy results in deep learning model can reach 99.99%.

Keywords—Attack classification, hyperparameter, Bayesian optimization, Intrusion detection system, IoT

I. INTRODUCTION

The Internet of Things (IoT) is a significant component of industrial automation. A complex paradigm is a way of securing an IoT system that links billions of devices with different characteristics [1]. Different new threats begin to emerge and grow more sophisticated. This increases the need for intelligent security solutions to secure data in IoT networks, namely the Intrusion Detection System (IDS) [2].

Various machine learning (ML) and deep learning (DL) algorithms have been proven to be used in the research area of intrusion detection systems [3]. Especially for DL, some techniques have been widely implemented for anomaly-based IDS such as Deep Neural Network (DNN), Recurrent Neural Network (RNN), Deep Belief Network (DBN) [4]. However, the design of the deep learning model itself has several hyperparameters which need to be decided when constructing and training the model. In order to achieve optimal performance of DL architectural model, the right hyperparameters must be determined [5].

The optimisation method for hyperparameters in deep learning models is a costly computational problem. It takes

several hours or even days to evaluation some hyperparameter configuration manually. The tuning process can be done automatically with various methods such as Grid search [12], Random search [14], and Bayesian optimization [6], [15] which is more flexible than manually tuning hyperparameters (trial and error) on deep learning models. Among these methods, Bayesian optimization can produce better and faster configurations than HPO with grid search and random search techniques [5], [15]

Contributions in this study include are: (1) we proposed deep learning models using unsupervised autoencoder and supervised deep neural networks using the Bayesian hyperparameter optimization approach; (2) The results of this study also evaluate the use of ReLU variant activation function in deep learning model so it can help determine the proper activation function in deep learning model; (3) In evaluation process we used various weight initialization techniques to evaluate the impact of initialization technique to the activation function.

We list the abbreviations and acronyms used in the paper as a quick and convenient guide in Table 1.

TABLE I.	ACRONYMS AND ABBREVIATIONS LIST
----------	---------------------------------

ANN	Artificial Neural Network
BO	Bayesian Optimization
DAE	Deep Autoencoder
DDoS	Distributted Denial of Services
DL	Deep Learning
DNN	Deep Neural Network
DoS	Denial of Service
ELU	Exponential Linear Unit
HPO	Hyperparameter Optimization
IDS	Intrusion Detection System
IoT	Internet of Things
ML	Machine Learning
NIDS	Nework Intrusion Detection System
PreLU	Parametric ReLU
ReLU	Rectified linear units
SELU	Scaled Exponential Linear Unit
SMOTE	Synthetic Minority Oversampling Technique

The rest of this paper is structured accordingly. In Section 2, we briefly analyze some relevant works corresponding to a state-of-the-art method of deep learning and optimization of hyperparameters in the framework of intrusion detection. Section 3 presents our proposed DL architecture, and some

This research has received funding from Indonesia Ministry of Research,

Technology, and Higher Education (grant agreement 170/SP2H/LT/DRPM/2020).

methods of our work are used. We give explanations of our experiments in Section 4 and present the results. Finally, in section 5, we end this paper with a few remarks.

II. RELATED WORK

Utilization of deep learning (DL) in intrusion detection systems has succeeded in improving accuracy and attack recognition [7]. The classification performance of the DL model depends on the architecture of the DL. Some researchers use various autoencoder variants in NIDS for feature learning processes combined with different classifiers [8]–[11]. Author Yang et al. [8] combined improved conditional variational autoencoder (ICVAE) with a deep neural network. In the process to get the best model, a manual grid search was performed to determine hyperparameters such as the number of hidden layers, the number of nodes, the learning rate, and L2.

Other researchers Rezvy et al. [9] used an AE autoencoder in combination with a dense neural network. AL-Hawawreh et al. [10] proposed Deep Autoencoder (DAE) in combination with the Deep Feed Forward Neural Network (DFFNN) as a classifier. Zhao et al. [11] proposed method to identify new forms of attacks through a Semi-Supervised Discriminant Auto-encoder (SSDA) combined with a heuristic denoising

Most of the selection of DL model structures such as the number of nodes, the number of hidden layers and several other hyperparameters in previous researches performed manually (trial and error) or with a limited combination of grids. In fact, model performance is very sensitive to hyperparameter layout as shown by Pawlicki 2019 [12] which uses manual grid search to find hyperparameter epoch, batch size, activation function, optimizer, number of hidden layers and number of neurons in Artificial Neural Network (ANN) based on NIDS. The hyperparameter tuning process is essential to improve deep learning performance [6], [13].

III. METHOD AND DESIGN

A. Proposed Model

In our previous study [16], we used the autoencoder based feature extraction with various activation functions and a varied number of nodes. The results of this study show the activation function, and the number of nodes in the hidden layer significantly determine the detection and classification performance. However, the process of feature extraction in the intrusion detection system [16] still uses manual search based on trial and error and is very time-consuming. For this reason, in this research, we propose an intrusion detection system with an autoencoder pre-training process and a DNN classification with a hyperparameter tuning process based on Bayesian optimization (BO).

The phases of the proposed model can be seen in Figure 1, which starts by choosing a dataset and pre-processing dataset. For pre-training, the deep learning model uses an unsupervised autoencoder algorithm which extracts features. The encoder layer model will be transferred to a classifier using a deep neural network. To improve accuracy performance, we used automatic hyperparameter tuning based on a Bayesian optimization (BO). The evaluated hyperparameters are learning rate, number of nodes on a hidden layer, batch size, activation function and weight initialization. One of the focuses of this research is to investigate the effect of hyperparameter tuning on deep learning models using only 1 hidden layer. The Gaussian BO function automatically updates the hyperparameter value to the model evaluated by a certain number of iterations to obtain the best results.

Fig. 1. Deep Learning Architecture-based Attacks classification

B. Dataset

This study uses the Bot-IoT dataset [17], which represents an attack on the IoT environment. This dataset has been selected because it represents a quite realistic IoT attack environment compared to the previous dataset. This dataset consists of four types of attacks, namely DoS, DDoS, information gathering and information theft. The attack types are grouped into eleven sub-classes as in Table 2. The number of records from the dataset is quite large, more than 72 million records. In this experiment, we used the 5% version of the entire dataset that consists of 46 features.

TABLE II. COMPOSITION OF THE BOT-IOT DATASET USED

		Flow	Training-	Testing-	Training-set
Category	Sub Category	count	set	set	SMOTE
Normal	Normal	477	381	96	50000
	UDP	1032975	826412	206563	826412
DoS	TCP	615800	492826	122974	492826
	HTTP	1485	1217	268	50000
	UDP	948255	758690	189565	758690
DDoS	TCP	977380	781607	195773	781607
	HTTP	989	787	202	50000
Dagammaiagamaa	Service_Scan	73168	58470	14698	58470
Reconnaissance	OS_Fingerprint	17914	14364	3550	50000
Theft	Keylogging	73	59	14	50000
Inen	Data_Exfiltration	6	7	3	50000
Total		3668522	2934820	733706	3218005

In feature selection From 46 features of the BoT-IoT dataset [17], there were several features were eliminated, i.e. pkSeqID, stime, flgs_number, proto_number, saddr, sport, daddr, dport, state number, and ltime. These features were eliminated due to some duplication of features, and other features are more specific to the identity of packages that are not related to an attack's characteristics. Next step, we applied feature modification in label subcategory by merging label category-subcategory to facilitate the grouping of attack types. Then attack, category and subcategory features are used as labels. In the feature encoding process, we used a one-hot encoding method for nominal or categorical features in flags, protocol and state. The feature flag was mapped to 9 features, and the feature protocol became 5, the feature state became 11. Feature labels have also been mapped into five classes for categories and eleven classes for subcategory. After the encoding process, the overall features of the data set were transformed into 56 features, which became the input features of the deep learning model.

Furthermore, the dataset was divided into 80% into training sets and 20% into testing sets. Specifically, for the data_exfilteration class, we added data redundancy for the balanced process of the datasheet. The number of classes of the subcategory itself is very imbalanced, especially for the theft attack category (see table 2). We used the Synthetic Minority Oversampling Technique (SMOTE) method to generate balanced data then the IDS model could detect all class attacks correctly. This balanced SMOTE process was only carried out on the training set data by upsampling from small data to 50000 samples.

The last step, Feature scaling is a process to convert data into a specific range. In this phase, the feature scaling process on training-set and testing-set uses Min-max scaling with a range of [0.1]. Then the data is ready to be used on the deep learning model

C. Deep Learning Model

Figure 1 shows a proposed deep architectural model. The deep learning model uses a pre-training process using an unsupervised autoencoder and a fine-tuning process with a supervised DNN. The pre-training process with this autoencoder is useful for extracting knowledge from unsupervised training sets. Autoencoder consists of 2 stages of encoding and decoding. The encoding process will compress the input data into a low-dimensional

representation. Then the decoder process will reconstruct the low-dimensional data from the encoder so that the output results from this autoencoder process produce an output that is close to the input data. The encoder vector function h is denoted as given in (1).

$$z = f(W.x + b) \tag{1}$$

W is the weight matrix, and b is the bias vector, x is the input feature vector, while f(.) is the activation function used.

The decoder function returns the vector z to the output vector \hat{x} , which has the same dimension as the input.

$$\hat{x} = f(W^T \cdot h + b') \tag{2}$$

The activation function f(.) in this decoded process used sigmoid. The loss function uses the mean square error (MSE) that will minimize the difference between the input and output vectors.

Then by using the encoding vector z, which is a representation of the extracted data, will be transferred to the DNN model. So the DNN model will consist of 3 layers, namely the input layer and the hidden layer that comes from the encoding layer, is then added to the output layer using softmax activation. In supervised DNN, using bias values and matric weights transferred from the encoding layer is retrained to predict label class. Output labels will be evaluated in each iteration using categorical cross-entropy as loss function, and adam as optimizer function.

D. Bayesian Optimisation

Bayesian Optimization (BO) is an optimization model that generates predictive distributions of potential value with a probability approach to optimize the Blackbox function to be optimized [18]. This Bayesian optimization process will look for the next sampling point x_t value by optimizing the acquisition function using the Gaussian process:

$$x_t = argmax_x u(x|D_{1:t-1}) \tag{3}$$

Where $t = 1, 2, \cdots$ is an iteration for several samples of hyperparameter combinations to be evaluated, x is the hyperparameter value to be observed. u is the acquisition function, and $D_{1:t-1}$ is the posterior distribution to be optimized.

In this experiment, we use the Expected Improvement (EI) (in equation 4) as acquisition function to take a sample from the

$$EI(\mathbf{x}) = \mathbb{E}max(f(\mathbf{x}) - f(\mathbf{x}^+), 0)$$
(4)

 $f(x^+)$ represents the best sample value to far and x^+ is the sample 's position.

E. Performance Metrics and Environment Setup

Evaluation of deep learning after hyperparameter optimization used accuracy as a metric performance. We also observed the time required to see the impact of the activation and kernel initialization functions on the model in the deep model training phase. After obtaining the most accurate performance of the model, it is evaluated using the testing-set. The experiment was conducted using Python on the Google Collaboratory framework using the Tensorflow and Keras libraries. The Bayesian Optimization Hyperparameter Method used the Skopt Optimization Library [19] to produce the best model. Some of the hyperparameter values that the tuning process performs include the value of the learning rate, the number of hidden layer nodes, the activation function, and the initial kernel (see Figure 1).

The pre-training process for the autoencoder and finetuning of the deep learning model only uses 10 epochs each stage. When training the DNN model, the training set that has been upsampled with SMOTE becomes 3,218,005 records data, 80% split for the learning process, and 20% for the validation process. The best model obtained is re-evaluated using a testing-set of 733,706 data.

IV. RESULTS AND DISCUSSION

A. Results of Bayesian Optimization

BO is only effective on continuous hyperparameters [15]. Therefore, BO was run in parallel to accelerate the tuning process for hyperparameters in categorical dimensions such as activation and weight initialization. Table 3 showed the effects of hyperparameter tuning for the entire activation function and the initial kernel function.

TABLE III.
BEST ACCURACY RESULTS FOR VARIOUS ACTIVATION AND

WEIGHT INTIALIZATION.
Image: compared baseline in the second secon

Activation function	Weight Initialization	base value a		the best value after tuning			
			training	Learning		batch	
		Accuracy	time	rate	nodes	size	Accuracy
ELU	lecun_normal	0.8455	288.627	0.0100	45	256	0.99975
	glorot_uniform	0.8479	281.494	0.0019	45	32	0.99990
	he_normal	0.8207	282.519	0.0100	45	128	0.99977
	lecun_uniform	0.8407	282.028	0.0100	45	256	0.99974
	glorot_normal	0.8376	283.488	0.0100	45	256	0.99976
	he_uniform	0.8413	282.708	0.0100	45	256	0.99989
	normal	0.8233	269.454	0.0085	37	64	0.99991
LeakyReLU	lecun_normal	0.8250	266.204	0.0051	28	128	0.98645
	glorot_uniform	0.8385	266.55	0.0100	20	256	0.98652
	he_normal	0.8291	266.814	0.0014	45	256	0.98481
	lecun_uniform	0.8299	266.395	0.0029	45	32	0.98374
	glorot normal	0.8377	267.113	0.0100	20	256	0.98526
	he uniform	0.8377	264.356	0.0006	20	32	0.98369
	normal	0.8219	264.731	0.0007	44	32	0.98574
PReLU	lecun normal	0.8353	232.745	0.0100	45	128	0.98474
	glorot uniform	0.8398	235.674	0.0036	45	256	0.98598
	he normal	0.8381	234.04	0.0040	21	32	0.98485
	lecun uniform	0.8322	232.393	0.0020	45	32	0.98539
	glorot normal	0.8278	233.031	0.0024	45	256	0.98501
	he uniform	0.8317	233.07	0.0011	20	32	0.98512
	normal	0.8167	236.35	0.0100	43	256	0.98607
ReLU	lecun normal	0.8527	250.305	0.0099	39	64	0.99989
	glorot uniform	0.8432	248,926	0.0100	45	32	0.99985
	he normal	0.8555	247.071	0.0100	45	256	0.99985
	lecun uniform	0.8480	250.595	0.0100	45	256	0.99982
	glorot normal	0.8569	252 598	0.0100	45	32	0 99979
	he uniform	0.8594	249 746	0.0100	45	32	0.99986
	normal	0.8348	252 115	0.0061	45	256	0 99967
SELU	lecun normal	0.8620	252.041	0.00017	45	32	0.99989
	glorot uniform	0.8775	254 434	0.0100	45	32	0 99970
	he normal	0.8764	254 358	0.0021	34	128	0 99958
	lecun uniform	0.8657	254.35	0.0021	45	32	0.99982
	glorot normal	0.8767	255.125	0.0100	45	64	0.99833
	he uniform	0.8791	253.952	0.0053	2.5	32	0.99967
	normal	0.8590	251.503	0.0100	2.5	256	0.99958
		2.0070		2.0100	20		

^{a.} for base value learning rate= 0.00001, number of neuron =30, and batch size=256

There were 5 activation functions of ReLU variants evaluated in the experiment. Each of these activation functions was tested using various weight initialization functions. So there were 35 kinds of combinations between the activation function and the kernel initialization. The deep learning model is evaluated with 35 combinations with the hyperparameter tuning BO process using the Gaussian Process for the value of learning rate, number of nodes and batch_size. The base value of the variety of the activation and kernel initialization functions uses the learning rate = 0.00001, the number of neurons in the hidden layer = 30 and batch_size = 256.

Fig. 2. Performance-based model based on combination activation and kernel initialization using base value before tuning hyperparameter

The SELU activation function dominates the other activation functions for the whole weight initialization function in table 3 and Figure 2. SELU is a self-normalizing development of ELU, makes learning particularly robust and faster [20]. And the highest accuracy of 87.91 % is achieved by he_uniform weight initialization. Figure 2 also shows that the ReLU activation function is relatively stable for base value.

Fig. 3. Performance-based model based on combination activation and kernel initialization after tuning hyperparameter

We can observe the training process time for the base value in Table 3. With the same hyperparameters, it points out that PReLU activation function is the activation function with the fastest training process. It shows that PReLU tends to perform better for a limited number of epochs than ReLU. In the meantime, ELU activation function is the activation function with the longest learning time. It indicates that ELU is slightly slower to train from these findings. The ELU function has an exponential computation that slows down the process [21]. Meanwhile, the effect of weight initialization is not significant due to the unpredictable random factor.

After the hyperparameter tuning process with the total number of evaluations was carried out for each combination n calls = 15, the entire model has been evaluated with as much as 525 options. Table 3 and Figure 3 show that, after tuning

with BO and Gaussian Process, the accuracy value increases to over 98.3%. Using the ELU activation function, normal weight initialization, learning rate value at 0.0085, number of nodes 37 and batch size 64, the results of the best accuracy value reaching 99.991%.

Figure 3 also indicates the accuracy of the LeakyReLU and PReLU activation functions underperformed due to other activation functions. For all the tests performed, the LeakyReLU alpha value was 0.01. The effects of LeakyReLU could be affected by choosing the α value which is not the optimal. Similarly, PReLU activation used only the default value of the keras library in the experiment. There are several alpha parameters PReLU itself, such as initialization, restriction and regularizer, which must be tuned also to obtain optimum value. Figure 3 also indicates the efficiency of the LeakyReLU and PReLU activation functions underperformed due to other activation functions.

The BO procedure searches hyperparameters based on the search-space dimension range on the learning rate, batch size and number of hidden nodes. Figure 4 described the search space dimension on the objective function for the ELU activation function and normal weight initialization. The value of partial dependencies is determined by calculating the average target value of many random samples for the dimension of the learning rate, batch size and the number of nodes. The red star indicates the best-observed value. In Figure 5, the best value for the study rate is 0.0085, batch_size is 64 (2^6) and the dense number 37. In the figure, the closer the average accuracy as objective value is to 0.01 (low = 1e-6, high = 1e-2). The higher the average accuracy. Similarly, the higher the number of nodes, the higher the average accuracy of the objective value. In table 3, most of the best values are obtained in the number of nodes in the hidden layer at the largest value of the dimensional interval (low = 20, high = 45).

Fig. 4. Partial Dependence plots of the objective function in ELU as activation function and kernel_initialization normal

The effect of variable continuous hyperparameters that are tuned based on the impact of increasing accuracy performance can be evaluated from the general results of various combinations of hyper-parameters (Figure 5). The results of the different combinations of hyperparameters were tested with a random forest regressor to decide the hyperparameters features had the greatest effect on the increased accuracy. And results are shown to be the learning rate followed by the batch size value for that have a significant impact on improving accuracy. In contrast, the number of neurons doesn't have a considerable effect on classification accuracy.

Fig. 5. Feature Importance of Continous hyperparameters

B. Performance Evaluation and comparison

After finding the best model for all ReLU, ELU, SELU, LeakyReLU and PReLU activation functions, the best model is evaluated using a testing-set. Table 4 summarizes the findings of the best model assessment.

TABLE IV. EVALUATION OF BEST MODEL IN TESTING-SET

Activation	weight	Data	Train	Data Test	
function	intialization	Loss	Accuracy	Loss	Accuracy
ELU	normal	0.000657	0.999915	0.001214	0.999931
SELU	lecun_normal	0.000729	0.999905	0.000854	0.999920
ReLU	lecun_normal	0.000907	0.999892	0.001423	0.999890
LeakyReLU	glorot_uniform	0.066026	0.986534	0.069737	0.985508
PReLU	normal	0.067739	0.986068	0.070105	0.985264

The best score for the ELU activation function on the testing set is 99,993%. The best accuracy as objective function value is close to 100 % for any weight initialization with the hyperparameters of the search space (15 calls). Hyperparameter tuning with Gaussian method accelerates the deep-learning model's convergence, while in autoencoder as well as in deep neural network processes the number of the epoch was only 10.

After running all those experiments, the activation function indeed affect the final accuracies and the losses. ELU activation is robust than ReLU, SELU, Leaky ReLU and PReLU activation functions. The discussion of previous studies by Pedamonti [20] supported this finding. Furthermore, the stability of the activation function must be considered when selecting it. The results show that after tuning, LeakyReLU and PReLU are significantly less accurate than other activations. So it is necessary to determine the value of the alpha parameter for both activation functions.

Overall, the results obtained using just a small epoch with BO's hyperparameter tuning method are very strong with classification results will exceed 99.993% even with a small number of epochs (10 epochs in the pre-training method and 10 epochs in the classification process). Compared to some previous studies using the same data set for multiclass classification, the detection rate (weighted overall accuracy) results achieved are superior. As in previous studies by Alkadi et al. [22] using Mixture Localization-based Outliers (MLOs) and Gaussian mixture model to classify multiclass attacks trends of only 97.98%. Similarly, the best results for deep autoencoder models with a detection rate of 98.394% were obtained for research carried out by Ferrag et al. [4] which evaluated several deep learning models. Khraisat et al. [23] proposed a hybrid intrusion detection system using an ensemble method for the same datasets with features selection. The detection rate of the proposed model was 99.97%.

Finally, our experiment has shown that the performance depends on how we change the optimizer hyperparameters and how we set up our deep learning model. In this study, ELU activation and normal weight initializer with Bayesian optimization using the Gaussian process were better than the others, but this may not be the case with other tasks and other data. In developing a deep learning model, multiple possibilities need to be tested, and hyper-parameter selections used to evaluate which options are best.

V. CONCLUSION

We proposed in this study deep learning models in framework using intrusion detection unsupervised autoencoder and supervised deep neural networks using the Bayesian hyperparameter optimization method. With the hyperparameter tuning process using Bayesian optimization, the detection rate value of the BoT-IoT dataset has been increased to 99.993%, which is higher than the previous state of the art. From the results of the best model after hyperparameter tuning, it was found that compared to the evaluated ReLU variant, the ELU activation function provided the best performance. Based on the obtained results, the learning rate value is the continuous parameter, which influences most in deep learning performance, while batch sized and the number of hidden layer nodes has no significant effect.

In the future, we will evaluate the deep learning model by adding the number of hidden layers and other hyperparameters and comparing them with various deep learning methods and various datasets.

ACKNOWLEDGMENT

The authors would like to thank data science research group, Universitas Bina Darma, and University for support and facilities.

REFERENCES

- M. Serror, S. Hack, M. Henze, M. Schuba, and K. Wehrle, "Challenges and Opportunities in Securing the Industrial Internet of Things," IEEE Trans. Ind. Inf., pp. 1–1, 2020, doi: 10.1109/TII.2020.3023507.
- [2] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, "Network intrusion detection for IoT security based on learning techniques," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2671–2701, 2019.
- [3] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh, "Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic," IEEE Sens. Lett., vol. 3, no. 1, pp. 1–4, Jan. 2019, doi: 10.1109/LSENS.2018.2879990.
- [4] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, "Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study," Journal of Information Security and Applications, vol. 50, p. 102419, Feb. 2020, doi: 10.1016/j.jisa.2019.102419.
- [5] M. Feurer and F. Hutter, "Hyperparameter Optimization," in Automated Machine Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds. Cham: Springer International Publishing, 2019, pp. 3–33.
- [6] M. Zhang, H. Li, J. Lyu, S. H. Ling, and S. Su, "Multi-level CNN for lung nodule classification with Gaussian Process assisted hyperparameter optimization," arXiv:1901.00276 [cs, eess], Jan. 2019,

Accessed: Sep. 26, 2020. [Online]. Available: http://arxiv.org/abs/1901.00276.

- [7] Y. Xin et al., "Machine Learning and Deep Learning Methods for Cybersecurity," IEEE Access, vol. 6, pp. 35365–35381, 2018, doi: 10.1109/ACCESS.2018.2836950.
- [8] Y. Yang, K. Zheng, C. Wu, and Y. Yang, "Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network," Sensors, vol. 19, no. 11, p. 2528, Jun. 2019, doi: 10.3390/s19112528.
- [9] S. Rezvy, M. Petridis, A. Lasebae, and T. Zebin, "Intrusion Detection and Classification with Autoencoded Deep Neural Network," in Innovative Security Solutions for Information Technology and Communications, vol. 11359, J.-L. Lanet and C. Toma, Eds. Cham: Springer International Publishing, 2019, pp. 142–156.
- [10] M. AL-Hawawreh, N. Moustafa, and E. Sitnikova, "Identification of malicious activities in industrial internet of things based on deep learning models," Journal of Information Security and Applications, vol. 41, pp. 1–11, Aug. 2018, doi: 10.1016/j.jisa.2018.05.002.
- [11] F. Zhao, H. Zhang, J. Peng, X. Zhuang, and S.-G. Na, "A semi-selftaught network intrusion detection system," Neural Comput & Applic, Apr. 2020, doi: 10.1007/s00521-020-04914-7.
- [12] M. Pawlicki, R. Kozik, and M. Choraś, "Artificial Neural Network Hyperparameter Optimisation for Network Intrusion Detection," in Intelligent Computing Theories and Application, vol. 11643, D.-S. Huang, V. Bevilacqua, and P. Premaratne, Eds. Cham: Springer International Publishing, 2019, pp. 749–760.
- [13] Y. Yoo, "Hyperparameter optimization of deep neural network using univariate dynamic encoding algorithm for searches," Knowledge-Based Systems, vol. 178, pp. 74–83, Aug. 2019, doi: 10.1016/j.knosys.2019.04.019.
- [14] J. F. Torres, D. Gutiérrez-Avilés, A. Troncoso, and F. Martínez-Álvarez, "Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting," in Advances in Computational Intelligence, vol. 11506, I. Rojas, G. Joya, and A. Catala, Eds. Cham: Springer International Publishing, 2019, pp. 259– 269.
- [15] E. C. Garrido-Merchán and D. Hernández-Lobato, "Dealing with Categorical and Integer-valued Variables in Bayesian Optimization with Gaussian Processes," Neurocomputing, vol. 380, pp. 20–35, Mar. 2020, doi: 10.1016/j.neucom.2019.11.004.
- [16] Y. N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, and F. Jasmir, "Automatic Features Extraction Using Autoencoder in Intrusion Detection System," in 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Oct. 2018, pp. 219–224, doi: 10.1109/ICECOS.2018.8605181.
- [17] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, "Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset," Future Generation Computer Systems, vol. 100, pp. 779–796, 2019.
- [18] P. Murugan, "Hyperparameters Optimization in Deep Convolutional Neural Network / Bayesian Approach with Gaussian Process Prior," arXiv:1712.07233 [cs, stat], Dec. 2017, Accessed: Sep. 26, 2020. [Online]. Available: http://arxiv.org/abs/1712.07233.
- [19] "skopt," Scikit-Optimize. https://pypi.org/project/scikit-optimize/ (accessed Oct. 07, 2020).
- [20] D. Pedamonti, "Comparison of non-linear activation functions for deep neural networks on MNIST classification task," arXiv:1804.02763 [cs, stat], Apr. 2018, Accessed: Mar. 26, 2020. [Online]. Available: http://arxiv.org/abs/1804.02763.
- [21] M. A. Mercioni and S. Holban, "The Most Used Activation Functions: Classic Versus Current," in 2020 International Conference on Development and Application Systems (DAS), Suceava, Romania, May 2020, pp. 141–145, doi: 10.1109/DAS49615.2020.9108942.
- [22] O. AlKadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, "Mixture Localization-Based Outliers Models for securing Data Migration in Cloud Centers," IEEE Access, vol. 7, pp. 114607–114618, 2019, doi: 10.1109/ACCESS.2019.2935142.
- [23] Khraisat, Gondal, Vamplew, Kamruzzaman, and Alazab, "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks," Electronics, vol. 8, no. 11, p. 1210, Oct. 2019, doi: 10.3390/electronics8111210.

Host

STMIK AKAKOM Yogyakarta

STMIK AKAKOM YOGYAKARTA Code for Life

Technical Support

IEEE Indonesia Section

orginized by:

akakom.ac.id

irsi.or.id

CERTIFICATE

PROUDLY PRESENTED TO:

Yesi Novaria Kunang (Universitas Sriwijaya & Universitas Bina Darma, Indonesia); Siti Nurmaini, Deris Stiawan and Bhakti Yudho Suprapto (University of Sriwijaya, Indonesia)

Authors of the Paper 1570683809 Entitled:

Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

for outstanding contribution at the 3rd ISRITI 2020 (International Seminar on Research of Information Technology & Intelligent Systems) organized by STMIK AKAKOM YOGYAKARTA in collaboration with the Indonesia Researcher & Scientist Institute (IRSI). Yogyakarta - Indonesia, 10 December 2020

Check for Validation

CERTIFICATE

PROUDLY PRESENTED TO:

Yesi Novaria Kunang

Presenters of the Paper Entitled:

Improving Classification Attacks in IOT Intrusion Detection System using Bayesian Hyperparameter Optimization

for outstanding contribution at the 3rd ISRITI 2020 (International Seminar on Research of Information Technology & Intelligent Systems) organized by STMIK AKAKOM YOGYAKARTA in collaboration with the Indonesia Researcher & Scientist Institute (IRSI). Yogyakarta - Indonesia, 10 December 2020

Check for Validation

3rd ISRITI 2020 will be conducted as a VIRTUAL conference (online) 10 December 2020