ANALISIS BEBAN AKTIVITAS FISIK LARI MEMINDAHKAN CONE UNTUK MEMINIMALISASI CIDERA

Yanti Pasmawati¹, Selvi Atesya Kesumawati², Bayu Hardiono³ Dosen Universitas Bina Darma Jalan Jenderal Ahmad Yani No. 12 Palembang Pos-el: bayuhardiyono@gmail.com

Pos -el: yantipasmawati@mail.binadarma.ac.id

Abstract: Running move the cone is physical activity. Physical activity can improve physical fitness, but physical activity was sometimes a risk of muscle injury. To determine whether physical activity affects the run to move the cone with a physical fitness physiology approach, the research sample of 25 male sex aged 18-24 years. The treatment is done in the form of pre-test, treatment or training programs, and post test. The exercise program consisted of 3 sets, activity time per set of 4 minutes, rest time per set 5 minutes. The results of calculations of energy consumption and% CVL can be concluded that physical activity run to move the cone to give effect to the operator or the person's physical fitness and exercise program that has a method of workload and fatigue does not occur, including the level of activity is very light physical activity run moving cones 1 and 2 set sets, while 3 sets not recommended to be done as it needs to be repaired.

Keywords: physical activity, physiology, energy consumption, cardiovascular, physical fitness

Intisari: Lari memindahkan cone merupakan aktivitas fisik. Aktivitas fisik bisa meningkatkan kebugaran jasmani, namun aktivitas fisik terkadang menimbulkan resiko cidera otot. Penelitian ini merupakan penelitian eksperimen dengan perlakuan treatmet sampel sebanyak 25 orang berjenis kelamin laki-laki berumur 18-24 tahun. Perlakuan yang dilakukan berupa pre test, treatment atau program latihan, dan post test. Program latihan terdiri dari 3 set, waktu aktivitas per set 4 menit, waktu istirahat per set 5 menit. Hasil perhitungan cardiovascular % CVL dapat disimpulkan bahwa

aktivitas fisik lari memindahkan cone memberikan pengaruh terhadap kebugaran jasmani operator atau seseorang dan metode program latihan yang memiliki beban kerja tidak terjadi kelelahan dan termasuk tingkat aktivitas sangat ringan adalah aktivitas fisik lari memindahkan cone 1 set dan 2 set, sedangkan 3 set tidak disarankan untuk dilakukan karena perlu dilakukan perbaikan.

Kata kunci: aktivitas fisik, fisiologi, cardiovascular

1. PENDAHULUAN

Olahraga saat ini sudah menjadi kebutuhan bagi masyarakat, banyaknya pusat-pusat olahraga yang dipenuhi oleh masyarakat yang ingin berolahraga merupakan salah satu bukti nyata, bahwa olahraga saat ini bukan hanya sekedar kebutuhan, namun sudah menjadi gaya hidup. Pada perkembangannya, banyak masyarakat melakukan olahraga yang bertujuan

untuk memelihara dan meningkatkan kesehatan. Salah satu olahraga sehat yang sering dilakukan hampir semua orang yaitu dengan berlari. Olahraga semacam ini dapat diartikan sebagai olahraga kesehatan., Olahraga kesehatan memiliki beberapa syarat yang harus dipenuhi di dalam aktivitas fisik intensitasserta bebannya homogen, submaximal, serta tidak boleh ada kompetisi unsur didalamnya.

Aktivitas fisik adalah setiap gerakan tubuh dihasilkan oleh otot rangka yang yang memerlukan pengeluaran energi. Aktivitas fisik dengan beban yang tidak sesuai dengan kemampuan manusia dan *Inactivity* fisik (kurangnya aktivitas fisik) merupakan faktor resiko independen untuk penyakit kronis, dan secara keseluruhan diperkirakan menyebabkan kematian secara global (WHO, 2010; Physical Activity. In Guide to Community Preventive Services Web site, 2008).

Berdasarkan adanya resiko yang berbahaya bagi manusia di atas, maka butuhnya memahami beban kerja/olahraga yang dapat berpengaruh terhadap aspek fisiologi manusia. Fisiologi menggunakan berbagai metode untuk mempelajari biomolekul, sel, jaringan, organ, sistem organ, dan organisme secara keseluruhan menjalankan fungsi fisik dan kimiawinya untuk mendukung kehidupan. Oleh karena itu pada penelitian ini akan dilakukan analisis beban aktivitas fisik lari memindahkan cone untuk meminimalisasi adanya resiko cidera. Adapun tujuan dari penelitian ini adalah

- 1. Pengukuran denyut nadi operator.
- Menghitung beban kardiovaskular (% CVL)
- 3. menentukan klasifikasi beban kerja berdasarkan peningkatan denyut nadi kerja yang dibandingkan dengan denyut nadi maksimum karena beban kardiovaskular (cardiovascular load = % CVL)

2. METODOLOGI PENELITIAN

Objek penelitian adalah aktivitas fisik lari memindahkan cone. Sampel yang digunakan sebanyak 25 orang, berjenis kelamin laki-laki berumur 18-24 tahun. Tempat pengambilan data dilaksanakan di lapangan olahraga dan laboratorium Desain sistem kerja dan Ergonomi Universitas Bina Darma.

Data-data yang dibutuhkan untuk kelancaran penelitian ini bersumber dari data primer dan data sekunder. Adapun data-data tersebut, antara lain

- Biodata Sampel atau operator (jenis kelamin, umur)
- 2. Denyut nadi istirahat operator
- Denyut nadi kerja operator pada saat melakukan aktivitas lari memindahkan cone

Penelitian ini merupakan penelitian eksperimen dengan pendekatan kuantitatif dimana penilaian beban kerja berdasarkan denyut nadi kerja

Pengukuran denyut nadi selama bekerja merupakan suatu metode untuk menilai cardiovasculair strain. Salah satu peralatan yang dapat digunakan untuk menghitung denyut nadi adalah telemetri dengan menggunakan rangsangan ElectroCardio Graph (ECG). Apabila peralatan tersebut tidak tersedia, maka dapat dicatat secara manual memakai stopwatch dengan metode 10 denyut (Kilbon, 1992).

Dengan metode tersebut dapat dihitung denyut nadi kerja sebagai berikut:

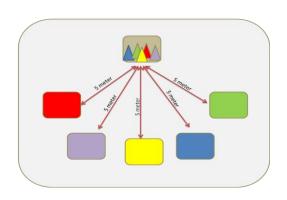
Denyut Nadi =
$$\frac{10 denyut}{waktuperhitungan} x60....(1)$$

Peningkatan denyut nadi mempunyai sangat penting dalam peran yang peningkatan cardiac output dari istirahat sampai kerja maksimum. Manuaba & Vanwonterghem (1996)menentukan klasifikasi beban kerja berdasarkan peningkatan denyut nadi kerja yang dibandingkan dengan denyut nadi maksimum karena beban kardiovaskular (cardiovascular load = % CVL) yang dihitung dengan rumus sebagai berikut :

$$\% CVL = \frac{100x(denyutnadi ker ja - denyutnadi istirahat)}{denyutna dim aksimum - denyutnadi istirahat}$$
.....(2)

Denyut nadi maksimum = 220 - umur(3)

Dari hasil perhitungan % CVL tersebut kemudian dibandingkan dengan klasifikasi sebagai berikut


- $X \le 30 \%$ = tidak terjadi kelelahan
- $30 < X \le 60 \% = diperlukan$ perbaikan
- 60 < X ≤ 80 % = kerja dalam waktu singkat
- 80 < X ≤ 100 % = diperlukan tindakan segera

 X > 100 % = tidak diperbolehkan beraktivitas

Program latihan berlangsung selama 18 kali latihan untuk pengukuran kebugaran jasmani. Adapun program latihan seperti tabel 1 di bawah ini

Tabel 1. Program Latihan (*Threatment*)

No.	Minggu	Set	Repetisi	Istirahat Set (menit)	Waktu latihan per set (menit)
1.	1	1	1	0	4
	2	1	1	0	4
	3	2	1	5	4
	4	2	1	5	4
	5	3	1	5	4
	6	3	1	5	4
2.	1	1	1	0	4
	2	1	1	0	4
	3	2	1	5	4
	4	2	1	5	4
	5	3	1	5	4
	6	3	1	5	4
3.	1	1	1	0	4
	2	1	1	0	4
	3	2	1	5	4
	4	2	1	5	4
	5	3	1	5	4
	6	3	1	5	4

Gambar 1. Aktivitas Fisik Lari Memindahkan *Cone*

Sampel melakukan aktivitas fisik lari memindahkan *cone* ke arah yang telah ditentukan dengan jarak 5 meter.

Peralatan yang dipersiapkan antarta lain lapangan yang datar dan aman, *cone*, meteran, cat, peluit, dan *stopwatch*, *heart rate monitor*.

3. HASIL DAN PEMBAHASAN

Data Operator

Operator dalam melakukan aktivitas lari memindahkan *cone* berjumlah 25 orang berjenis kelamin laki-laki. Adapun persentase jumlah menurut usia operator sebagai berikut:

Gambar 2. Data Operator Aktivitas

Lari Memindahkan *Cone*

Pengukuran denyut nadi kerja (DNK) dan denyut nadi istirahat (DNI) dilakukan sebanyak 16 kali pertemuan untuk setiap operator atau sampel. Program latihan aktivitas lari memindahkan *cone* dilakukan sebanyak 3 set dengan waktu perset selama 5 menit dan aktivitas selama 4 menit. Adapun gambar program latihan dapat dilihat pagda gambar 3. di bawah ini:

Gambar 3. Program Latihan Lari Memindahkan Cone

Penilaian Beban Kerja Berdasarkan Denyut Nadi Kerja

Pengukuran denyut nadi selama bekerja merupakan suatu metode untuk menilai cardiovasculair strain. Klasifikasi beban kerja berdasarkan peningkatan denyut nadi kerja yang dibandingkan dengan denyut nadi maksimum karena beban kardiovaskular (cardiovascular load = % CVL) yang dihitung dengan rumus sebagai berikut:

Denyut nadi maksimum = 220 – umur

%CVL =
$$\frac{100x(denyutnadi \text{ ker } ja - denyutnadi \text{ istirahat})}{denyutna \text{ dim } aksimum - denyutnadi istirahat}$$
%CVL =
$$\frac{100x(88,75 - 78)}{199 - 78} = 8,884$$
= 8,88 %

Perhitungan CVL dilakukan untuk semua operator, adapun nilai %CVL semua operator dapat dilihat pada tabel 2 dibawah ini:

Tabel 2. Nilai % Cardiovascular

Nama	Umu	Denyut	%CVL	%CVL	%CVL
	r	Nadi	(1 set)	(2 set)	(3 set)
	(tahu	Maksim			
	n)	um (pulse/m			
		enit)			
Alfarab	21	199	8,88429	11,5546	29,2735
Alfarab	21	199	36,9266	27,8017	31,6
Wahyu	24	196	19,82758	20,6140	23,8426
Wahyu	24	196	21,39830	24,5833	40,2654
Alfrizandi	22	198	27,52293	11,2903	35,6481
Alfrizandi	22	198	27,7777	4,46428	31,0869
Darul	21	199	24,3243	26,0162	35,5371
Darul	21	199	27,8225	20,2755	26,3513
Hendri	22	198	23,51694	35,1851	52,5423
Hendri	22	198	23,49137	39,4495	27,4774
Sukahir	24	196	3,289473	35,1851	40,9482
Sukahir	24	196	9,210526	36,25	32,8947
Hasanuddin	23	197	6,52173	30,9734	54,824
Hasanuddin	23	197	12,3786	37,3873	64,2241
Mujimat	24	196	46,818	36,6525	42,8571
Mujimat	24	196	31,25	35,5504	44,6902
Sevta	21	199	50,6637	20,327	27,8761
Sevta	21	199	49,0825	11,6228	32,8260
Erwinsyah	20	200	23,4513	21,1711	46,304
Erwinsyah	20	200	16,3793	51,9736	29,4354
Arief	21	199	25,6410	14,257	24,7933
Arief	21	199	4,34782	19,2148	19,5378
Satria	20	200	24,29906	22,3913	47,587
Satria	20	200	30,60747	16,4414	51,22
Devi	21	199	11,6142	33,3333	50,652
Devi	21	199	30,1653	2,94117	49,7747
Andi	20	200	13,4	14,3145	48,9495
Andi	20	200	15,551	13,0530	46,7391
Iswadi	21	199	20,238	22,6890	59,8290
Iswadi	21	199	20,5284	14,375	58,9130
Nugroho	20	200	6,55737	53,3482	12,2807
Nugroho	20	200	9,67741	20,4347	33,9285
Andre	22	198	8,984	19,2622	60,7798
Andre	22	198	10,9126	13,729	60,6818
Wachid	21	199	14,2276	3,2520	20,2702
Wachid	21	199	14,0496	5,32786	21,875
Riki	23	197	23,3173	23,4090	18,9075
Riki	23	197	40,1869	26,9911	47,9357
Rifki	20	200	0,43103	25,4385	21,6517
Rifki	20	200	2,17391	3,28947	24,3589
Fidriansyah	21	199	15,265	16,5929	53,6885
Fidriansyah	21	199	13,71681	13,5080	52,521
Andri	21	199	6,640625	14,6694	57,2072
Andri	21	199	5,84677	15,6746	58,7606
Andriansya	23	197	22,7477	24,369	37,8205
Andriansya	23	197	21,3303	13,1048	21,0869
Martin	22	198	67,3423	60,4166	61,4864
Martin	22	198	67,0454	64,0625	63,0630
Ahmad	23	197	62,2951	48,3944	50,6880
Ahmad	23	197	20,6422	65,5405	42,1487
Rata-rata			22,4064	24,8431	40,5930

Dari hasil perhitungan % CVL operator didapat bahwa rata-rata CVL untuk aktivitas fisik lari memindahkan cone 1 set sebesar 22,41%, 2 set sebesar 24,84%, dan 3 set sebesar 40,59%.

Nilai %CVL tersebut di atas diklasifikasikan bahwa aktivitas fisik lari memindahkan *cone* 1 set dan 2 set tidak terjadi kelelahan karena nilai %CVL berada di bawah 30%, sedangkan aktivitas 3 set perlu dilakukan perbaikan program latihan karena %CVL berada diantara 30%-60%.

4. SIMPULAN

Berdasarkan analisis dan proses penelitian yang telah dilakukan, hasil yang dapat disimpulkan dari penelitian ini, antara lain

- Aktivitas fisik lari memindahkan cone memberikan pengaruh terhadap kebugaran jasmani operator atau seseorang.
- 2. Metode program latihan yang memiliki beban kerja tidak terjadi kelelahan dan termasuk tingkat aktivitas sangat ringan adalah aktivitas fisik lari memindahkan *cone* 1 set dan 2 set dimana waktu aktivitas 4-8 menit dan istirahat perset selama 5 menit.

DAFTAR RUJUKAN

- Manuaba, A. 1992. *Pengaruh Ergonomi Terhadap Produktivitas*. Dalam Seminar Produktivitas Tenaga Kerja, Jakarta.
- Muhajir. 2004. Pendidikan Jasmani Teori dan Praktek. Jakarta: Erlangga.
- Neville, santon. Et al, 2004, *Handbook of human Factors and Ergonomics Methods*, CRC PressNew York.
- Nurmianto, Eko. 2004. Ergonomi Konsep Dasar Aplikasinya, edisi II, cetakan pertama. Surabaya: Guna Widya.
- Sedarmayanti. 1996. Tata Kerja dan Produktivitas Kerja, Suatu Tinjauan Aspek Ergonomi atau Kaitan antara Manusia dengan Lingkungan Kerja. Bandung; CV. Mandar Maju.
- WHO. 2004. Physical Activity In Guide to Community Preventive Service.