KLASIFIKASI AYAT AL-QURAN TERJEMAHAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBORS

UNIVERSITAS BINA DARMA, UNIVERSITAS BINA DARMA (2022) KLASIFIKASI AYAT AL-QURAN TERJEMAHAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBORS. KLASIFIKASI AYAT AL-QURAN TERJEMAHAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBORS.

[img]
Preview
Text
Prosiding BDCOCS - Aan dan Ilman.pdf

Download (1MB) | Preview
Official URL: https://www.binadarma.ac.id

Abstract

Artike Al-Quran merupakan kitab suci umat islam yang mengatur seluruh aspek kehidupan baik secara individu maupun bermasyarakat. Bagi umat islam, sudah seharusnya mereka mejadikan Al-Quran sebagai pedoman hidup. Minimal hal mendasar yang harus dipelajari dalam Al-Quran yaitu Larangan, perintah dan informasi yang terdapat di dalam Al-Quran.Namun, saat ini masih jarang pengelompokkan Al-Quran didalam klasifikasi tersebut, padahal Banyak metode pengklasifikasian yang dapat diterapkan pada Ayat Al-Quran terjemahan. Beberapa metode yang bisa digunakan seperti Support vector machine dan k-nearest neighbors. Pada penelitian ini, penulis mengggunakan kedua metode tersebut untuk menampilkan perbandingan tingkat akurasi klasifikasi pada Ayat Al-Quran terjemahan.Didalam melakukan klasifikasi teks, sering terdapat kata-kata yang tidak penting. Sehingga mempengaruhi proses klasifikasi. Oleh karena itu, untuk mengatasi permasalahan tersebut, penulis menggunakan proses stemming, tokenizing, dan stopword.Hasil perbandingan dari kedua metode ini menunjukkan bahwa Metode KNN (k=3,6,9) memberikan hasil yang lebih baik daripada metode SVM linear.

Item Type: Article
Subjects: L Education > L Education (General)
Divisions: Faculty of Law, Arts and Social Sciences > School of Education
Depositing User: Mr Edi Surya Negara
Date Deposited: 17 Jun 2022 01:03
Last Modified: 17 Jun 2022 01:03
URI: http://eprints.binadarma.ac.id/id/eprint/11825

Actions (login required)

View Item View Item