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Abstract 

 
One important strategic issue related to the design and operation of a physical 

distribution network is the determination of the best sites for warehouses for 

intermediate stocking points as well as its capacity. Therefore, it is important to 

integrate the facility location models and decision with logistical functions and 
components in the logistics performance analysis. This paper focuses on optimizing 

the capacitated multi-items, multi-facilities, multi-periods logistics network problem. 

It differs from previous research in that the model includes the selection of warehouse 

location and capacity, and also considers backlogging. The problem is optimizing the 
production and distribution plan over a finite time horizon to satisfy demand 

requirements while determining the best selection of warehouses to be used from 

available warehouses and choosing its optimum capacity and the best strategy to 

distribute products to customers. A mixed integer linear programming (MILP) model 
is developed. To validate the model, several small data sets are used. The problem is 

solved using commercial linear programming package, CPLEX ver. 11. From the 

experiments there are several managerial insights. First, networks with higher 

warehouse capacity can expect better reduction in total network cost. Second, the 
number of warehouses activated and its capacity selected are related to the total 

demand that must be satisfied. Third, networks with high fixed setup cost tend to 

increase the production level to maximum capacity and store more inventories 

distributed in several periods And, networks with allowing backorder have a better 
performance when handling low demand and high demand. 
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1. Introduction 
 

It is quite common nowadays in business and industry for manufacturers and retailers to 

combine their efforts to efficiently handle the flow of products and to closely coordinate their 

production and logistics networks. One important strategic issue related to the design and 

operation of a physical distribution network is the determination of the best sites for warehouses 

for intermediate stocking points as well as its capacity. The use of warehouses provides a company 

with flexibility to respond to changes in the marketplace and can result in significant cost savings 

due to economies of scale in transportation or shipping costs. Therefore, it is important to integrate 

the facility location models and decision with logistical functions and components in the logistics 

performance analysis.  

In order to improve the logistics network performance in an integrated way, we need to 

consider the integration of production planning, and the distribution problems. This includes the 

merging of the production, inventory, and transportation problems in a single formulation. This is 

very crucial in logistics system optimization. In a company operation, a production planner is 

concerns with optimizing the production and inventory level in each period so that the cost is 

minimized. On the other hand, the distribution planner is concerns with determining the 

distribution plan to satisfy customer demand so that the transportation cost is minimized. Without 

the integrated analysis, these two processes independently could increase the inventory holding 



cost and yield longer lead times. Therefore, a company needs to explore a better model in order to 

achieve its objective of minimizing the total costs. 

The integration of production planning and distribution model systems needs to be developed 

in a strategic perspective, tactical as well as operational (Bramel & Simchi-Levi, 1997). Strategic 

decisions are generally long-term in scope. These decisions include the number, location and 

capacities of plants and warehouses, or the flow of material through the logistics network. Tactical 

decisions have a time horizon of several months up to one year. These decisions include 

purchasing and production decisions, inventory policies and transportation strategies. The 

operational decisions involve the day-to-day activities of a business operation such as scheduling, 

and vehicle routing. The operations of production and distribution can be decoupled if there is a 

sufficient amount of inventory between them (Chen, 2004).  

The importance of the integrated analysis in logistics network problems have been considered 

by several authors, as mentioned in the previous section, and substantial evidence exists in the real 

business application (such as Haq et al. (1991), Arntzen et al. (1995), Robinowitz and Mehrez 

(2001)) to demonstrate that integrating decisions can lead to substantial increases in efficiency and 

effectiveness. Therefore, the crucial questions that arise in business application nowadays are: how 

can we develop an integrated model from which we are able to improve the logistics network 

performance of a company especially in the problem of the capacity selection of company 

facilities.  

In this paper, we focus on optimizing the capacitated multi-items, multi-facilities, multi-

periods logistics network problem. We differ from previous research in that our models include the 

selection of warehouse location and capacity, and we also consider backlogging. The problem is 

optimizing the production and distribution plan over a finite time horizon to satisfy demand 

requirements while determining the best selection of warehouses to be used from available 

warehouses and choosing its optimum capacity and the best strategy to distribute products to 

customers.  

This paper is organized as follows. Section 2 presents the literature review. Section 3 presents 

model formulation in form of a mixed integer linear programming (MILP) for the single-product 

problem as well as the multi-product problem. Computational results are discussed in Section 4. 

 

 

2. Literature Review 
 

Over the past several decades, many authors have proposed models and methods for solving 

the facility location problem. Francis et al. (1983), Aiken (1985), Current et al. (1990), Sridharan 

(1995), Owen and Daskin (1998) provided reviews on various facility location problems. Francis 

et al. (1983) provided a review on formulation and solution of facility location problem. Aiken 

(1985) provided a review on facility location problem on physical distribution management. 

Current    et al. (1990) provided a review on model of multi-objectives facility location problems. 

Sridharan (1995) provided an extensive review of capacitated plant location problems. Owen and 

Daskin (1998) reviewed facility location model in strategic planning decisions. 

There are many classifications of location problem that have been widely studied. One is the 

uncapacitated facility location problem versus capacitated problem. The uncapacitated problem 

was studied, among others, by Khumawala and Whybark (1976), Roodman and Schwarz (1977), 

Van Roy and Erlenkotter (1982), Kelly and Maruckeck (1984), Koerkel (1989), Gao and Robinson 

(1994), Chardaire et al. (1996), and Wang et al. (2003). Recently, Resende and Werneck (2006) 

presented a multi-starts heuristic for the uncapacitated facility location problem. 

The capacitated facility location problem was studied, among others, by Geoffrion and Graves 

(1974), Kaufman et al. (1977), Erlenkotter (1981), Lee and Luss (1987), Shulman (1991), 

Melachrinoudis et al. (1995), Hormozi and Khumawala (1996), Pirkul and Jayaraman (1998), 

Hinojosa et al. (2000), Antunes and Peeters (2001), Melkote and Daskin (2001). Recently, Klose 

and Drexl (2005) provided a review on continuous location models, network location models, 

mixed integer programming models, and their application. Wu et al. (2006) provided an extension 

of capacitated facility location problem in which the general setup cost functions and multiple 

facilities in one site are considered. 



The integration of facility location and logistics aspects had also been studied by a number of 

authors, such as Jayaraman and Pirkul (2001), Syam (2002), Melo et al. (2005), and recently 

Thanh et al. (2008). Jayaraman and Pirkul (2001) provided a study on integrated logistics model 

for locating production and distribution facilities in a multi-echelons environment. They model 

both strategic and operational decisions to design and test a production and distribution system 

model and evaluate its performance. They presented a mixed integer programming formulation of 

the integrated, multi-products, production and distribution problem subject to constraints 

associated with locating and operating the firm’s production and facilities. In their model, 

customers are supplied from a single warehouse and backorders are not permitted. 

Syam (2002) stated that the critical logistics issue in current logistics problems is the 

determination of optimal locations for plants and warehouses, as well as the determination of 

optimal consolidation policies, given the set of open sites. He provided a location-consolidation 

model that simultaneously determines facility locations, flows, shipment compositions, and 

shipment cycle times in a multi-commodities, multiple plants and warehouse environment. He 

presented a mixed integer programming formulation for minimizing total cost comprises inventory 

holding cost, ordering costs, transportation costs, manufacturing costs, handling costs at 

warehouses and fixed costs both at plants and warehouses. Their model does not allow 

backlogging. 

Melo et al. (2005) provides a mixed integer linear programming model for dynamic facility 

location that captures important features of strategic supply chain planning problems. The features 

include the relocation of existing facilities through capacity transfer to new location, integration of 

inventory, transportation, and supply decision, the availability budget for investment in facility 

location and relocation and supply decision, the generic structure of the supply chain network. 

They assumed that products can be transferred between warehouses or distribution centers (DCs), 

or transfer directly to customers. In their model however the backorders are not permitted. 

Thanh et al. (2008) recently proposed a dynamic model for facility location and supply chain 

design. Their model is a mixed integer linear programming model for a multi-commodities multi-

echelons production-distribution network with deterministic demand. The features are selection of 

suppliers, opening or closing facilities, planning capacity for existing facilities, production 

management and distribution management as well as inventory management. They assumed 

products can be transferred between plants or transfer directly to customers, but they do not 

consider transfers between warehouses. In their model, they consider a capacity extension options 

at plants and backorders are not permitted. 

 

 

3. Model Formulation 
 

In order to solve logistics network optimization problem, several optimization methods can be 

used, such as mathematical programming, genetic algorithms, simulated annealing, etc. This paper 

will use mathematical programming for the reason: it provides insight into problem, its 

characteristics and the linkages between the various interacting factors. Furthermore, there has 

been considerable progress in recent years with solving large-scale integer programming problems. 

We consider the problem of designing a distribution network that involves determining 

simultaneously the best selection of warehouses used and the best strategy for distributing the 

product from the plants to the warehouses and from the warehouses to the customers. Our problem 

has the following features: 

 l plants P1, P2, …, Pl where the product can be produced. 

 m potential warehouses sites W1, W2, …, Wm where the product can be stored. 

 q products identified as 1,2,…q, which can be produced in the plants over a period of 

time. In general, it is assumed that in each time period, the production facility is allowed 

to produce more than one product, coupled with limited production capacity. 

 r capacity level available identified as 1,2,…, R of the potential warehouses sites 

 n customer locations C1, C2, …, Cn where the product is required. 

 Plant production capacities for each product and storage capacities of the potential 

warehouses are known. 



 Customer requirements at each centre are deterministic and known for each period. 

Furthermore, they must be met, that is backorders are not permitted. 

 All products are assumed delivered directly to warehouse. 

 A planning horizon of T periods. 

 A homogeneous fleet of vehicles to transport the product through the network. 
 
Our model in this section assumes that there are a number of plants that capable to produce 

multi products with a specific capacity for each product over a period time. The setup cost is a 

fixed cost on a lot-for lot basis, not dependent on the realized volume. It is incurred at each plant 

whenever the production runs. All products are assumed to be directly delivered to warehouses or 

retail outlets. Customers typically demand multiple units of different products that are distributed 

from open warehouses. Meanwhile, warehouses could receive those products from several plants 

where are assumed directly delivered to warehouse or retail outlet location. Each warehouse could 

keep a limited amount of inventory for each product, with specific holding cost. Whenever a 

potential warehouse is used and operated, a fixed charged will be incurred. 

Products are delivered using a homogeneous fleet vehicle with specific capacity for each 

product. The movement of vehicle incurs a variable transportation cost only. The transportation 

capacity constraints in our problem are both between Plants and Warehouses and between 

Warehouses and Customers. The transport capacity in this model is the limitation of the maximum 

quantity of product that can be carried out by the vehicle in period T. If represents the capacity of 

transportation line between plant i and warehouse j in period t, then constraint  ∑ 𝑋𝑖𝑗𝑞
𝑡

𝑞 ≤ 𝑇𝑖𝑗
𝑡  

shows the upper bound of the total product that can be transported from plant i to warehouse j in 

period t, the total transportation line capacity.  

On the warehouses side, represents the capacity of transportation line between warehouse j 

and customer k in period t. There is a following constraint∑ 𝑌𝑗𝑘𝑞
𝑡

𝑞 ≤ 𝑈𝑗𝑘
𝑡  that forces the total 

product transported from warehouse j to customer k in period t to be below its upper bound, total 

transportation line capacity. By definition these parameters are nonnegative; so we have another 

constraint   𝑇𝑖𝑗
𝑡 , 𝑈𝑗𝑘

𝑡  ≥ 0 in our extended model. 

It is assumed that the demands are given. We consider a finite horizon divided into periods 

where in each period the demand of product q can be satisfied by production, by stock or inventory 

carried over from previous periods, or by backlog. In the case of demand being satisfied by 

backlogging, Johnson & Montgomery (1974) stated that to represent the possibility of satisfying 

demand in a period through production in a later period, we could use network flow model. We 

define the decision variables for the quantity of inventory of product q in period t that is carried 

over from the previous period at warehouse j is denoted by 𝐼ℎ𝑗𝑞
𝑡 . The quantity of product q that is 

backordered in period t is denoted by 𝐼𝑏𝑗q
𝑡 . The net inventory level at warehouse j in period t is 

𝐼𝑗𝑞
𝑡 = 𝐼ℎ𝑗𝑞

𝑡 − 𝐼𝑏𝑗𝑞
𝑡  
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Figure 1. Network model representative for logistics problem with warehouse selection 
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The issues that will be answered in this section are: which plant will be used to produce which 

product; the quantity to be produced at each plant; and which warehouse facilities will be used or 

opened and its capacity. 

We can represent the problem in the form of a network (Figure.1). We define the network for 

the flow of products from their production points to customers through the warehouse as storage. 

This model then refers to three components: the production sites, indexed by i, the candidate 

warehouses, indexed by j, and the customers, indexed by k.  

A mixed integer linear programming (MILP) model is developed to solve the problem. We 

formulate the problem as a multi-products network flow problem with a fixed charge cost function. 

The problem is to determine a production and distribution plan over the planning horizon that 

meets the customer demands, satisfies the capacity restrictions and minimizes the total logistics 

costs. The costs include: production, transportation, and inventory holding. It is assumed those 

initial inventories are zero for all items. 

 

3.1.  Model Parameters 
 

Logistics network problem studied in this paper will be formulated using the following 

notation: 

T : number of periods in the planning horizon. 

l : number of plants where product can be produced. 

m  : number of potential warehouses site where the product can be stored. 

n  : number of customer locations where the product is required. 

q : number of type product which can be produced in plants. 

R : number of capacity levels available to potential warehouses. 

 
For each product q, we define the following notation for our cost data: 

𝑠𝑖𝑞
𝑡  : setup cost for product q at plant i in period t, i = 1,2, …, l ; t = 1,2, …, T; q = 1,2, …, q. 

𝑝𝑖𝑞
𝑡  : unit cost of production for product q at plant i in period t, i = 1,2, …, l; t = 1,2, …, T;             

q = 1,2, …, q. 

𝑐𝑖𝑗𝑞
𝑡  : unit cost of transportation to deliver product q from plant i to warehouse j in period t,             

i = 1,2, …, l; j = 1,2, …, m; t = 1,2, …, T; q = 1,2, …, q. 

𝑐𝑗𝑘𝑞
𝑡  : unit cost of transportation to deliver product q from warehouse j to customer k in period t,         

j = 1,2, …, m; k= 1,2, …, n; t = 1,2, …, T; q = 1,2, …, q. 

ℎ𝑗𝑞
𝑡  : unit inventory holding cost at warehouse j for product q in period t, j = 1,2, …, m;                  

t = 1,2, …, T; q = 1,2, …, q. 

𝑏𝑗𝑞
𝑡  : unit backorder cost at warehouse j for product q in period t, j = 1,2, …, m; t = 1,2, …, T;   

q = 1,2, …, q. 
𝑔𝑟𝑗

𝑡   : fixed cost of operating warehouse j with capacity level r in period t, j = 1,2, …, m;                 

r = 1,2, …, R; t = 1,2, …, T. 

 

The other notations that we use are: 

𝑃𝑖𝑞   : capacity of plant i to produce product q , i = 1,2, …, l; q = 1,2, …, q. 

𝑊𝑟𝑗  : potential warehouse j with capacity level r, j = 1,2, …, m; r = 1,2, …, R. 

𝐷𝑘𝑞
𝑡  : demand for product q of customer k in period t, k = 1,2, …, n; t = 1,2, …,T; q = 1,2, …, q. 

𝐼𝑗𝑞
𝑡  : inventory level of product q at warehouse j at the end of period t, j = 1,2, …, m;                          

t = 1,2, …, T; q=1,2, …, q. 

𝐼𝑏𝑗𝑞
𝑡  : backorder level of product q at warehouse j in period t. 

𝐼ℎ𝑗𝑞
𝑡  : inventory level of product q in period t that is carried over from the previous period at 

warehouse j. 
 

 

 



3.2.  Decision Variables 

 

The decision variables that we use are: 

𝑋𝑖𝑞
𝑡  represents the amount of product q produced at plant i in period t. 

𝑋𝑖𝑗𝑞
𝑡  represents the amount of product q transported from plant i to warehouse j in period t. 

𝑌𝑗𝑘𝑞
𝑡  represents the amount of product q transported from warehouse j to customer k in period t. 

𝑧𝑖𝑞
𝑡  represents the binary setup variable at plant i in producing product q in period t. 

𝑢𝑟𝑗
𝑡   represents the binary variable at warehouse j with capacity level r in period t. 

 

 

3.3.  Problem Formulation 

 

Our problem is to minimize the total cost of production, transportation, and inventory over the 

T periods. The model assumes no starting inventory. The studied can be formulated as a MILP as 

follows: 

Minimize 

∑ ∑ ∑(𝑋𝑖𝑞
𝑡 𝑝𝑖𝑞

𝑡 + 𝑠𝑖𝑞
𝑡 𝑧𝑖𝑞

𝑡 )

𝑞

𝑞=1

𝑙

𝑖=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑋𝑖𝑗𝑞
𝑡 𝑐𝑖𝑗𝑞

𝑡

𝑞

𝑞=1

𝑚

𝑗=1

𝑙

𝑖=1

𝑇

𝑡=1

+ ∑ ∑ ∑ 𝐼ℎ𝑗𝑞
𝑡 ℎ𝑗𝑞

𝑡

𝑞

𝑞=1

𝑚

𝑗=1

𝑇

𝑡=1

 

+ ∑ ∑ ∑ 𝐼𝑏𝑗𝑞
𝑡 𝑏𝑗𝑞

𝑡

𝑞

𝑞=1

𝑚

𝑗=1

𝑇

𝑡=1

+ ∑ ∑ ∑ 𝑔𝑟𝑗
𝑡 𝑢𝑟𝑗

𝑡

𝑚

𝑗=1

𝑅

𝑟=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑ 𝑌𝑗𝑘𝑞
𝑡 𝑐𝑗𝑘𝑞

𝑡

𝑞

𝑞=1

𝑛

𝑘=1

𝑚

𝑗=1

𝑇

𝑡=1

 

(1) 

where,  𝑧𝑖𝑞
𝑡 = {

1, 𝑖𝑓 𝑋𝑖𝑞
𝑡 > 0

0, 𝑒𝑙𝑠𝑒           
     

                 𝑢𝑟𝑗
𝑡 = {

1, 𝑖𝑓 𝑌𝑗𝑘𝑞
𝑡 > 0

0, 𝑒𝑙𝑠𝑒.           
 

Subject to following constraints: 

𝑋𝑖𝑞
𝑡 ≤ 𝑀𝑧𝑖𝑞

𝑡  , ∀ 𝑖, 𝑡  (2) 

∑ 𝑋𝑖𝑞
𝑡

𝑞𝑖 ≤ 𝑃𝑖  , ∀ 𝑖, 𝑡  (3) 

∑ 𝑋𝑖𝑗𝑞
𝑡

𝑞𝑗 ≤ 𝑋𝑖𝑞
𝑡  , ∀ 𝑖, 𝑡  (4) 

∑ 𝑋𝑖𝑗𝑞
𝑡

𝑞𝑖 + ∑ (𝐼ℎ𝑗𝑞
𝑡−1 − 𝐼𝑏𝑗𝑞

𝑡−1)𝑞 − ∑ 𝑌𝑗𝑘𝑞
𝑡

𝑞𝑘 ≤ ∑ 𝑊𝑟𝑗 𝑢𝑟𝑗
𝑡

𝑟  , ∀ 𝑗, 𝑡 (5) 

∑ 𝑋𝑖𝑗𝑞
𝑡

𝑞𝑖 + ∑ (𝐼ℎ𝑗𝑞
𝑡−1 − 𝐼𝑏𝑗𝑞

𝑡−1)𝑞 ≥ ∑ 𝑌𝑗𝑘𝑞
𝑡

𝑞𝑘  , ∀ 𝑗, 𝑡  (6) 

∑ 𝑋𝑖𝑗𝑞
𝑡

𝑖 + 𝐼ℎ𝑗𝑞
𝑡−1 − 𝐼𝑏𝑗𝑞

𝑡−1 = ∑ 𝑌𝑗𝑘𝑞
𝑡

𝑘 + 𝐼ℎ𝑗𝑞
𝑡 − 𝐼𝑏𝑗𝑞

𝑡  , ∀ 𝑗, 𝑞, 𝑡  (7) 

∑ 𝑌𝑗𝑘𝑞
𝑡

𝑞𝑘 ≤ ∑ 𝑊𝑟𝑗 𝑢𝑟𝑗
𝑡

𝑟  , ∀ 𝑗, 𝑡  (8) 

𝐷𝑞𝑘
𝑡 = ∑ 𝑌𝑗𝑘𝑞

𝑡
𝑞𝑗  , ∀ 𝑘, 𝑡  (9) 

∑ 𝑋𝑖𝑗𝑞
𝑡

𝑞 ≤ 𝑇𝑖𝑗
𝑡  , ∀ 𝑖, 𝑗, 𝑡 (10) 

∑ 𝑌𝑗𝑘𝑞
𝑡

𝑞 ≤ 𝑈𝑗𝑘
𝑡   , ∀ 𝑗, 𝑘, 𝑡 (11) 

∑ 𝑢𝑟𝑗
𝑡

𝑟 ≤ 1 , ∀ 𝑗, 𝑡  (12) 

𝑢𝑗
𝑡 − ∑ 𝑢𝑟𝑗

𝑡
𝑟 ≥ 0 , ∀ 𝑗, 𝑡  (13) 

∑ 𝑢𝑗
𝑡

𝑗 ≤ 𝑛𝑊 , ∀ 𝑡  (14) 

𝑋𝑖𝑞
𝑡 , 𝑋𝑖𝑗𝑞

𝑡 , 𝑌𝑗𝑘𝑞
𝑡 , 𝐼𝑗𝑞

𝑡 , 𝐼ℎ𝑗𝑞
𝑡 , 𝐼𝑏𝑗𝑞

𝑡  ≥ 0  (15) 

𝑃𝑖 , 𝑊𝑟𝑗 ,  𝑇𝑖𝑗
𝑡 , 𝑈𝑗𝑘

𝑡    ≥ 0  (16) 

𝑧𝑖𝑞
𝑡  = 0 or 1  (17) 

𝑢𝑗
𝑡 = 0 or 1  (18) 

𝑢𝑟𝑗
𝑡  = 0 or 1.  (19) 



The objective function (1) represents the total costs over the T periods. It consists of 

production costs with a fixed charge cost function, warehousing fixed costs, inventory holding 

costs, backorder costs, and transportation costs. 

As the production cost function is a fixed charge cost function, thus constraint (2) assures that 

a setup cost will be incurred if there is product type q produced in plant i in period t. It will 

guarantee that takes value one whenever is positive. Note that a period t is called a production 

period if > 0. The amount of product q produced at plant i in period t, and transferred from plant i 

to warehouse j in period t is restricted by the capacity constraints (3) and (4).  

Total Product flow from plant i to warehouse j with capacity r and from warehouse j to 

customer k must respect the throughput capacity of warehouse j, as indicated in (5). The product 

flow is including the backorder position in period t. It is the nature of multi-products problem. 

Without this constraint, our problem can be stated as separated single product problem. Constraint 

(6) related to product flow requirement in warehouse j. Total product delivered out from 

warehouse j cannot exceed total product delivered to warehouse j.  

 Constraint (7) requires that the amount of product coming to warehouse j together with 

inventory from previous periods and backorder to previous periods, should be equal to the ending 

inventory and backorder position in warehouse j plus amount of product shipped to the customers. 

It is a balance constraint of inventory level in warehouse j during period time t. Constraint (8) 

assures that a fixed cost at warehouse j will be incurred if there is a demand of product q that are 

supplied from warehouse j in period t. Constraint (9) requires that warehouses must satisfy all 

demand. Constraint (10) limits the maximum number of product can be transported from plant i to 

warehouse j in period t. Constraint (11) limits the maximum number of products can be 

transported from to warehouse j to customer k in period t. 

Constraint (12) ensures that only one type of capacity of warehouse is used in period t. 

Constraint (13) is a logical relation that ensures demand will be satisfied by open warehouse j in 

period t. Constraint (14) is the maximum number of warehouse can be opened or used. Constraints 

(15) and (16) are non-negative value constraints. Constraint (17), (18) and (19) are the zero-one 

variables.  

 

 

4.  Computational Results and Discussions 
 

4.1. Data 

In this section, we describe the computational experience in solving our model. We generate 

several test data to demonstrate the applicability of the mathematical formulations above. The 

following data are used: 

 There are 9 nodes which represent 2 Plants (Plant 1 and Plant 2), 5 Warehouses (Warehouse 1, 

Warehouse 2, Warehouse 3, Warehouse 4, and Warehouse 5), and 2 Customers (Customer 1 

and Customer 2). 

 T period observation is 12 period. 

 Plants production capacities per-period are in the range low or high. 

 Inventory storage capacities in warehouses per-period are in the range low or high. 

 Demand are deterministic modeled. 

 Setup cost and production cost in production facilities are deterministic modeled. 

 Costs incurred in warehouses and warehouses fixed cost are deterministic modeled. 

 Transportation cost between plants, warehouses, and customers deterministic modeled. 

 
The results in this section seek to illustrate the impact of different factors on logist ics network 

with capacitated facilities to its total costs when we open or activate the available warehouses and 

select its capacity. We observe the effect of capacity constraints changing in production and 

warehouse facilities in handling various demand models.  

In order to test and illustrate the impact of different factor on basic model, 40 test problems 

are generated. It can be categorized in 10 cases:  



 Case 1: Low Plant Capacity and 1 Warehouse (LP-1W). Plant capacities used in this 

case are 8000 units/period. 

 Case 2: Low Plant Capacity and 2 Warehouses (LP-2W). Plant capacities used in this 

case are 8000 units/period. 

 Case 3: Low Plant Capacity and 2 Warehouses (LP-3W). Plant capacities used in this 

case are 8000 units/period. 

 Case 4: Low Plant Capacity and 4 Warehouses (LP-4W). Plant capacities used in this 

case are 8000 unit/period. 

 Case 5: Low Plant Capacity and all Warehouses (LP-5W). Plant capacities used in this 

case are 8000 units/period. 

 Case 6: High Plant Capacity and 1 Warehouse (HP-1W). Plant capacities used in this 

case are 15000 units/period. 

 Case 7: High Plant Capacity and 2 Warehouses (HP-2W). Plant capacities used in this 

case are 15000 units/period. 

 Case 8: High Plant Capacity and 3 Warehouses (HP-3W). Plant capacities used in this 

case are 15000 unit/period. 

 Case 9: High Plant Capacity and 4Warehouses (HP-4W). Plant capacities used in this 

case are 15000 units/period. 

 Case 10: High Plant Capacity and all Warehouses (HP-5W). Plant capacities used in 

this case are 15000 units/period. 
For each case we generate 4 scenarios of various setup costs and demand variation model. 

There are two demand models which are low level demand and high level demand, and two types 

of setup cost (low and high setup cost). We classify our scenarios as follows: 

A: for low setup cost, low demand,  

B: for high setup cost, low demand,  

C: for low setup cost, high demand,  

D: for high setup cost, high demand,  
The optimal production schedule and product movements as well as its total costs are 

computed for each configuration under all scenarios using CPLEX ver 11. The experiments were 

conducted on personal computer with Intel Core 2 Duo 2.66 GHz and 2 Gbyte memory. 

 

 

4.2. Results and Discussions 

 

The results of this section seek to illustrate the effect of increasing various model costs on the 

warehouses and its capacity selection. There are three warehouse capacities which should be 

selected, i.e. 3000 units/period, 6000 units/period or 9000 units/period. We observe using two 

plants capacity option: low capacity (8000 units/period) and high capacity (15000 units/period). 

First, we examined the case if we use low plants capacity. We examined how the total 

network cost change as we select the available warehouses and its capacity in storing products. We 

change the setup cost, from low cost to high setup cost, and vary demand from low to high demand 

setting. We classify the result based on the various cases. We found that the total network cost 

increases as we increase the setup cost, except in case 1 where the result is infeasible. We observed 

that having a high setup cost when handling demand changing from low demand to high demand 

generally is more favorable in low plants capacity model as resulting lower average total cost 

increment, 19.31% compare to 19.71% if we use lower setup value.  

We observed that the optimal number warehouses should be operated is 3 warehouses. When 

we use 3 warehouses we gain total cost reduction of: 4.14% in scenario A; 4.20% in scenario B; 

3.71% in scenario C; and 3.74% in scenario D.  While using 4 or 5 warehouses there are no further 

reduction obtained. We found that if we only use 1 warehouse to supply demand, the result is 

infeasible due to the insufficient capacity in our network. This finding brings us to the fact that our 

optimal solution will be achieved when we have sufficient capacity, in this case the warehouse 

capacity. 

 



Table 8.  Type of warehouse capacity operated for low plants capacity 

 

Scenario A Scenario B Scenario C Scenario D 

Case2 Type 1,2,3 Type 1,2,3 Type 1,2,3 Type 1,2,3 

Case3 Type 1,2 Type 1,2 Type 1,2,3 Type 1,2,3 

Case4 Type 1,2 Type 1,2 Type 1,2,3 Type 1,2,3 

Case5 Type 1,2 Type 1,2 Type 1,2,3 Type 1,2,3 

 

We observed the optimal warehouses schedule and found that when demand is low our model 

tend to operate warehouse type 1 and 2, except in case 2 where we limit to operate maximum only 

2 warehouses (Table 8). In case 2, all types of warehouses are used.  If demand is high, all types of 

warehouses will be used. From our results, we observed that the most warehouses used are 

warehouse 3 and 4.  

 

From Table 9 we also observed that by allowing backorder in the model, we gain cost 

reductions as we compare to the result of no-backorder model. We conclude that by allowing 

backorder in our model, we can handle demands better than basic model. 

 

Table 9. Comparison of total network cost reduction 

between backorder case and no-backorder case 

Number of Warehouse open Scenario A Scenario B Scenario C Scenario D 

2 -0.19% -0.26% -0.21% -0.30% 

3 -0.04% -0.09% -0.03% -0.02% 

4 -0.04% -0.09% -0.03% -0.02% 

5 -0.04% -0.09% -0.03% -0.02% 

 

Another observation from this case problem could be seen in Table 10. We summarize the 

running time of all scenarios and find that the problem difficulty to solve depends on the 

maximum number of warehouses operated and the values of the fixed costs. When we only 

allowed operating maximum 2 warehouses, our problems are more difficult to be solved as 

indicated in higher solution times. In other cases, the scenarios are solved faster. Table 5.32 is a 

result of the mixed integer linear programming relaxation done in CPLEX with emphasis on the 

optimality. We set a dynamic search as a searching method.  

 

Table 10. CPLEX running time of case with low plants capacity  

Case Scenario Solution Time (Sec) Case Scenario Solution Time (Sec) 

LP-2W-A 20.53 LP-4W-A 0.25 

LP-2W-B 167.31 LP-4W-B 0.91 

LP-2W-C 60.31 LP-4W-C 1.19 

LP-2W-D 288.31 LP-4W-D 2.94 

LP-3W-A 0.19 LP-5W-A 0.19 

LP-3W-B 2.50 LP-5W-B 0.78 

LP-3W-C 0.45 LP-5W-C 0.53 

LP-3W-D 2.94 LP-5W-D 3.16 

 

Finally, we examined the case if we use high plants capacity. We examined how the total 

network cost change as we select the available warehouses and its capacity in storing products. We 

change the setup cost, from low cost to high setup cost, and vary demand from low to high demand 

setting. We found that the total network cost increases as we increase the setup cost, except in case 

6 where the result is infeasible. We observed that having a high setup cost when handling demand 

changing from low demand to high demand generally is more favorable in low plants capacity 

model as resulting lower average total cost increment, 17.69% compare to 17.92% if we use lower 

setup value.  

We observed the effect of number warehouses operated to network total costs. We found that 

if we only use 1 warehouse to supply demand, the result is infeasible due to the insufficient 

capacity in our network. This finding brings us to the fact that our optimal solution will be 



achieved when we have sufficient capacity, in this case the warehouse capacity. It can be referred 

to constraint (5) in our model that indicates the property of our optimal solution.  

We observed that the optimal number warehouses should be operated is 3 warehouses. When 

we use 3 warehouses we gain total cost reduction of: 4.55% in scenario A; 4.57% in scenario B; 

4.00% in scenario C; and 4.05% in scenario D. While using 4 or 5 warehouses there are no further 

reduction obtained. We also observed that by allowing backorder in the model, when we supply 

high demand we gain cost reductions as we compare to the result of no-backorder model. 

However, no further cost reduction if we cover the low demand, except in scenario B (Table 11). 

We can conclude that by allowing backorder in our model, we can handle demands better than 

basic model.  

We also observed the optimal warehouses schedule and found that in all cases and scenarios 

warehouse type 1, type 2 and type 3 will be used.  

 

Table 11. Comparison of total network cost reduction  

between backorder case and no-backorder case 

Number of Warehouse open Scenario A Scenario B Scenario C Scenario D 

2 0.00% -0.02% 0.00% -0.01% 

3 0.00% 0.00% -0.02% -0.05% 

4 0.00% 0.00% -0.02% -0.05% 

5 0.00% 0.00% -0.02% -0.05% 

 

Another observation from this case problem could be seen in Table 12. We summarize the 

running time of all scenarios and find that the problem difficulty to solve depends on the 

maximum number of warehouses operated and the values of the fixed costs. When we only 

allowed operating maximum 2 warehouses, our problems are more difficult to be solved as 

indicated in higher solution times. In other cases, the scenarios are solved faster. Table 12 is a 

result of the mixed integer linear programming relaxation done in CPLEX with emphasis on the 

optimality. We set a dynamic search as a searching method.  

 

Table 12. CPLEX running time of case with high plants capacity  

Case Scenario Solution Time (Sec) Case Scenario Solution Time (Sec) 

HP-2W-A 0.31 HP-4W-A 0.06 

HP-2W-B 0.38 HP-4W-B 0.08 

HP-2W-C 0.14 HP-4W-C 0.08 

HP-2W-D 0.31 HP-4W-D 0.09 

HP-3W-A 0.06 HP-5W-A 0.05 

HP-3W-B 0.08 HP-5W-B 0.05 

HP-3W-C 0.06 HP-5W-C 0.06 

HP-3W-D 0.08 HP-5W-D 0.06 

 

 

5.  Conclusion 
 

In this paper we study a class of production-distribution problems arising in logistics supply 

chain networks. We discussed a facility selection problem in logistics network. In particular the 

selection of warehouses activation and its capacity selection. We studied the capacitated multi-

items, multi-facilities, multi-periods logistics network problem. Our problem considers fixed-

charge production cost with production capacities, fixed-charge warehousing cost with 

warehousing capacities, and linear transportation cost. We also considered the problems with 

transportation capacities and backorder capability. The models that we studied help managers to 

answer question that arise in managing the logistics network. 

In order to study our problems, for each model we generated several test problems which are 

categorized into 10 cases and 4 scenarios. In each case, we carried out our experiments by varying 

the plant’s capacity and the number of warehouses operated. To illustrate the impact of different 

factors, we generate our scenarios by varying the setup cost, and demand models. The problems 



are solved using CPLEX version 11. Our results indicate that the performance of our model 

depends on the value of setup costs, the value of demands, and the number of warehouses 

activated as well as the value of capacity of each facility. 

 From those results we obtain several managerial insights. First, networks with higher 

warehouse capacity can expect better reduction in total network cost. Second, the number of 

warehouses activated and its capacity selected are related to the total demand that must be 

satisfied. Third, networks with high fixed setup cost tend to increase the production level to 

maximum capacity and store more inventories distributed in several periods. Fourth, the network 

configuration will avoid storing inventories in warehouse with high holding cost. Fifth, the 

capacity of transportation line directly affects the total network cost. It is increased when its 

capacity tightens. Finally, networks with allowing backorder have a better performance when 

handling low demand and high demand. 
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